

\mathcal{A} ssignment

			Nucleus
1.	For effective nuclear forces, the distance should be	[Similar to (CPMT 2002); Orissa PMT 2004]
	(a) $10^{-10} m$ (b) $10^{-13} m$	(c) $10^{-15} m$	(d) $10^{-20} m$
2.	Mark the correct statement		[MP PMT 2004]
	(a) Nuclei of different elements can have the same num	ber of neutrons	L
	(b) Every element has only two stable isotopes		
	(c) Only one isotope of each element is stable		
	(d) All isotopes of every element are radioactive		
3.	For uranium nucleus how does its mass vary with volum	ne	
	(a) $m \propto V$ (b) $m \propto 1/V$	(c) $m \propto \sqrt{V}$	(d) $m \propto V^2$
1.	The order of radius of the nucleus of an atom is		[MP PET 2002]
	(a) $10^{-10} m$ (b) $10^{-12} m$	(c) $10^{-15} m$	(d) $10^{-17} m$
5.	Two protons exert a nuclear force on each other, the dis	stance between them is	[CPMT 2002]
	(a) $10^{-14} m$ (b) $10^{-10} m$	(c) $10^{-12} m$	(d) $10^{-8} m$
5.	Oxygen is more stable than nitrogen because		[TNPCEE 2002]
	(a) Atomic number of oxygen is greater than that of nit oxygen is less when compared to iron	rogen	(b) The atomic weight of
	(c) Oxygen helps burning	(d) Oxygen has equal num	ber of protons and neutrons
7.	The sodium nucleus $\frac{23}{11}$ Na contains		
	(a) 11 electrons (b) 12 protons	(c) 23 protons	(d) 12 neutrons
3.	The electron emitted in beta radiation originates from		[IIT-JEE (Screening) 2001
	(a) Inner orbits of atoms	(b) Free electrons existing	g in nuclei
	(c) Decay of a neutron in a nucleus nucleus	(d)	Photon escaping from the
).	The mass number of a nucleus is always		[MH CET 2001]
	(a) Equal to atomic number(b)number(d) Either (a) or (c)	Less than atomic number	(c) More than atomic
l o.	In the given particles, which of the following is stable		[CPMT 2000]
	(a) Electron (b) Proton	(c) Positron	(d) Neutron

Get More Learning Materials Here : 💻

11.	1 amu is equal to (QBP-64)		[CPMT 2000]
	(a) 1 <i>g</i>	(b) $4.8 \times 10^{-10} esu$	(c) $6.023 \times 10^{23} g$	(d) $1.66 \times 10^{-27} kg$
2.	The density of nuc	leus in kg/m^3 is of the order of		[MP PMT 2000]
	(a) 10 ⁴	(b) 10 ⁹	(c) 10^{13}	(d) 10 ¹⁷
3.	Fertile material an	nong the following is		[KCET 1999]
	(a) U^{233}	(b) U^{238}	(c) U^{235}	(d) Pu^{239}
•	The force between	a neutron and a proton inside the r		
	(a) Only nuclear a	ttractive (b) Only Coulomb force	(c) Both of the above	(d) None of these
	Outside a nucleus	-		[MP PET 1999]
	(a) Neutron is stal	ble	(b) Proton and neutron	both are stable
	(c) Neutron is uns	stable	(d) Neither neutron noi	r proton is stable
5.	Nuclear force is			EAMCET (Med.) 1998; CPMT 1999]
	(a) Short range an	id charge dependent	(b) Short range and cha	arge independent
	(c) Long range and	d charge independent	(d) Long range like elec	ctrostatic type
•	In ₈₈ Ra ²²⁶ nucleus	there are		
	(a) 138 protons an protons	nd 88 neutrons	(b)	138 neutrons and 88
	-	ad 88 electrons	(d)	226 neutrons and 138
	(c) 226 protons ar electrons			
2	electrons		nes B^{10} and B^{11} . Then t	he ratio of B^{10} B^{11} in nature
8.	electrons Atomic weight of 1	Boron is 10.81 and it has two isoto	pes ${}_5B^{10}$ and ${}_5B^{11}$. Then t	he ratio of ${}_5B^{10}$: ${}_5B^{11}$ in nature
•	electrons		pes ${}_5B^{10}$ and ${}_5B^{11}$. Then t	
•	electrons Atomic weight of I would be	Boron is 10.81 and it has two isoto		[CBSE PMT 1998]
	electrons Atomic weight of 2 would be (a) 19 : 81	Boron is 10.81 and it has two isoto (b) 10 : 11	(c) 15:18	[CBSE PMT 1998] (d) 81 : 19
	electrons Atomic weight of 2 would be (a) 19 : 81 Atoms whose nucle	Boron is 10.81 and it has two isoto (b) 10 : 11 ei contain different number of proto	(c) 15 : 18 ons but same number of net	[CBSE PMT 1998] (d) 81 : 19 utrons are called
•	electrons Atomic weight of 2 would be (a) 19 : 81 Atoms whose nucle (a) Isotopes	Boron is 10.81 and it has two isoto (b) 10 : 11 ei contain different number of proto (b) Isotones	(c) 15 : 18ons but same number of net(c) Isobars	[CBSE PMT 1998] (d) 81 : 19 utrons are called (d) Isoclinics
•	electrons Atomic weight of 2 would be (a) 19 : 81 Atoms whose nucle (a) Isotopes	Boron is 10.81 and it has two isoto (b) 10 : 11 ei contain different number of proto	(c) 15 : 18ons but same number of net(c) Isobars	[CBSE PMT 1998] (d) 81 : 19 utrons are called (d) Isoclinics
•	electrons Atomic weight of r would be (a) 19 : 81 Atoms whose nucle (a) Isotopes r_1 and r_2 are the r	Boron is 10.81 and it has two isoto (b) 10 : 11 ei contain different number of proto (b) Isotones adii of atomic nuclei of mass numbe	 (c) 15 : 18 ons but same number of new (c) Isobars ers 64 and 27 respectively. 	[CBSE PMT 1998] (d) 81 : 19 utrons are called (d) Isoclinics The ratio $\frac{r_1}{r_2}$ is
).).	electrons Atomic weight of 2 would be (a) 19 : 81 Atoms whose nucle (a) Isotopes	Boron is 10.81 and it has two isoto (b) 10 : 11 ei contain different number of proto (b) Isotones	(c) 15 : 18ons but same number of net(c) Isobars	[CBSE PMT 1998] (d) 81 : 19 utrons are called (d) Isoclinics
•	electrons Atomic weight of 1 would be (a) 19 : 81 Atoms whose nucle (a) Isotopes r_1 and r_2 are the r (a) $\frac{64}{27}$	Boron is 10.81 and it has two isoto (b) 10 : 11 ei contain different number of proto (b) Isotones adii of atomic nuclei of mass numbe (b) $\frac{27}{64}$ s into two nuclear parts which have	(c) 15 : 18 ons but same number of new (c) Isobars ers 64 and 27 respectively. (c) $\frac{4}{3}$	[CBSE PMT 1998] (d) 81 : 19 (d) Isoclinics (d) Isoclinics The ratio $\frac{r_1}{r_2}$ is (d) 1
•	electrons Atomic weight of 1 would be (a) 19 : 81 Atoms whose nucle (a) Isotopes r_1 and r_2 are the r (a) $\frac{64}{27}$ A nucleus ruptures	Boron is 10.81 and it has two isoto (b) 10 : 11 ei contain different number of proto (b) Isotones adii of atomic nuclei of mass numbe (b) $\frac{27}{64}$ s into two nuclear parts which have	(c) 15 : 18 ons but same number of new (c) Isobars ers 64 and 27 respectively. (c) $\frac{4}{3}$	[CBSE PMT 1998] (d) 81 : 19 utrons are called (d) Isoclinics The ratio $\frac{r_1}{r_2}$ is (d) 1
•	electrons Atomic weight of 1 would be (a) 19 : 81 Atoms whose nucle (a) Isotopes r_1 and r_2 are the r (a) $\frac{64}{27}$ A nucleus ruptures of their nuclear siz (a) $2^{1/3}$: 1	Boron is 10.81 and it has two isoto (b) 10 : 11 ei contain different number of proto (b) Isotones adii of atomic nuclei of mass number (b) $\frac{27}{64}$ s into two nuclear parts which have ze (nuclear radius)	 (c) 15:18 (c) 15:18 (c) Isobars ers 64 and 27 respectively. (c) 4/3 e their velocity ratio equal 	[CBSE PMT 1998 (d) 81 : 19 (d) 81 : 19 (d) Isoclinics The ratio $\frac{r_1}{r_2}$ is (d) 1 to 2 : 1. What will be the ratio (d) 1 : 3 ^{1/2}
•	electrons Atomic weight of 1 would be (a) 19 : 81 Atoms whose nucle (a) Isotopes r_1 and r_2 are the r (a) $\frac{64}{27}$ A nucleus ruptures of their nuclear siz (a) $2^{1/3}$: 1 Two nuclei are said	Boron is 10.81 and it has two isoto (b) 10 : 11 ei contain different number of proto (b) Isotones adii of atomic nuclei of mass number (b) $\frac{27}{64}$ s into two nuclear parts which have ze (nuclear radius) (b) 1:2 ^{1/3}	 (c) 15:18 (c) 15:18 (c) Isobars ers 64 and 27 respectively. (c) 4/3 e their velocity ratio equal 	[CBSE PMT 1998 (d) 81 : 19 (d) 81 : 19 (d) Isoclinics The ratio $\frac{r_1}{r_2}$ is (d) 1 to 2 : 1. What will be the ratio (d) 1 : 3 ^{1/2}
•	electrons Atomic weight of 1 would be (a) 19 : 81 Atoms whose nucle (a) Isotopes r_1 and r_2 are the r (a) $\frac{64}{27}$ A nucleus ruptures of their nuclear siz (a) $2^{1/3}$: 1 Two nuclei are said (a) Number of pro-	Boron is 10.81 and it has two isoto (b) 10 : 11 ei contain different number of proto (b) Isotones adii of atomic nuclei of mass number (b) $\frac{27}{64}$ s into two nuclear parts which have ze (nuclear radius) (b) 1:2 ^{1/3} d to be mirror nuclei if	 (c) 15:18 (c) 15:18 (c) Isobars ers 64 and 27 respectively. (c) 4/3 e their velocity ratio equal 	[CBSE PMT 1998 (d) 81 : 19 (d) 81 : 19 (d) Isoclinics The ratio $\frac{r_1}{r_2}$ is (d) 1 to 2 : 1. What will be the ratio (d) 1 : 3 ^{1/2}
•	electrons Atomic weight of 1 would be (a) 19 : 81 Atoms whose nucle (a) Isotopes r_1 and r_2 are the r (a) $\frac{64}{27}$ A nucleus ruptures of their nuclear siz (a) $2^{1/3}$: 1 Two nuclei are sais (a) Number of pro-	Boron is 10.81 and it has two isoto (b) 10 : 11 ei contain different number of proto (b) Isotones adii of atomic nuclei of mass number (b) $\frac{27}{64}$ s into two nuclear parts which have ze (nuclear radius) (b) 1:2 ^{1/3} d to be mirror nuclei if otons in the two nuclei are equal	(c) 15 : 18 ons but same number of new (c) Isobars ers 64 and 27 respectively. (c) $\frac{4}{3}$ the their velocity ratio equal (c) $3^{1/2}$: 1	[CBSE PMT 1998] (d) 81 : 19 utrons are called (d) Isoclinics The ratio $\frac{r_1}{r_2}$ is (d) 1 to 2 : 1. What will be the ratio (d) 1 : 3 ^{1/2} [AFMC 1994]
).	electrons Atomic weight of 1 would be (a) 19 : 81 Atoms whose nucle (a) Isotopes r_1 and r_2 are the r (a) $\frac{64}{27}$ A nucleus ruptures of their nuclear siz (a) $2^{1/3}$: 1 Two nuclei are said (a) Number of prov (b) Number of new (c) Number of new	Boron is 10.81 and it has two isoto (b) 10 : 11 ei contain different number of proto (b) Isotones adii of atomic nuclei of mass number (b) $\frac{27}{64}$ s into two nuclear parts which have ze (nuclear radius) (b) $1:2^{1/3}$ d to be mirror nuclei if otons in the two nuclei are equal itrons in the two are equal	(c) 15 : 18 ons but same number of new (c) Isobars ers 64 and 27 respectively. (c) $\frac{4}{3}$ the their velocity ratio equal (c) $3^{1/2}$: 1	[CBSE PMT 1998] (d) 81 : 19 utrons are called (d) Isoclinics The ratio $\frac{r_1}{r_2}$ is (d) 1 to 2 : 1. What will be the ratio (d) 1 : 3 ^{1/2} [AFMC 1994]
· · ·	electrons Atomic weight of 1 would be (a) 19 : 81 Atoms whose nucle (a) Isotopes r_1 and r_2 are the r (a) $\frac{64}{27}$ A nucleus ruptures of their nuclear siz (a) $2^{1/3}$: 1 Two nuclei are sais (a) Number of pro- (b) Number of neu- (c) Number of neu- (d) The number of	Boron is 10.81 and it has two isoto (b) 10 : 11 ei contain different number of proto (b) Isotones adii of atomic nuclei of mass number (b) $\frac{27}{64}$ s into two nuclear parts which have (b) $1:2^{1/3}$ d to be mirror nuclei if otons in the two nuclei are equal atrons in the two are equal atrons in one equals number of proto f nucleons in the two are equal of helium and sulphur are 4 and 3	(c) 15 : 18 ons but same number of neu (c) Isobars ers 64 and 27 respectively. (c) $\frac{4}{3}$ e their velocity ratio equal (c) $3^{1/2}$: 1 ons in the other and <i>vice-ve</i>	[CBSE PMT 1998] (d) 81: 19 utrons are called (d) Isoclinics The ratio $\frac{r_1}{r_2}$ is (d) 1 to 2: 1. What will be the ratio (d) 1: 3 ^{1/2} [AFMC 1994] ersa
•	electrons Atomic weight of 1 would be (a) 19 : 81 Atoms whose nucle (a) Isotopes r_1 and r_2 are the r (a) $\frac{64}{27}$ A nucleus ruptures of their nuclear siz (a) $2^{1/3}$: 1 Two nuclei are sais (a) Number of pro- (b) Number of neu- (c) Number of neu- (d) The number of The mass number	Boron is 10.81 and it has two isoto (b) 10 : 11 ei contain different number of proto (b) Isotones adii of atomic nuclei of mass number (b) $\frac{27}{64}$ s into two nuclear parts which have (b) $1:2^{1/3}$ d to be mirror nuclei if otons in the two nuclei are equal atrons in the two are equal atrons in one equals number of proto f nucleons in the two are equal of helium and sulphur are 4 and 3	(c) 15 : 18 ons but same number of neu (c) Isobars ers 64 and 27 respectively. (c) $\frac{4}{3}$ e their velocity ratio equal (c) $3^{1/2}$: 1 ons in the other and <i>vice-ve</i>	[CBSE PMT 1998] (d) 81: 19 utrons are called (d) Isoclinics The ratio $\frac{r_1}{r_2}$ is (d) 1 to 2: 1. What will be the ratio (d) 1: 3 ^{1/2} [AFMC 1994] ersa

CLICK HERE

Regional www.studentbro.in

Get More Learning Materials Here : 💻

(a) $2.5 \times 10^{-11} m$ (b) $2.5 \times 10^{-9} m$ (c) $7 \times 10^{-9} m$ (d) $7 \times 10^{-6} m$ $_{1}H^{1}$ and $_{1}H^{3}$ are examples of 25. (a) Isobars (b) Isotones (c) Isotopes (d) Isodiapheres Mass numbers of two isotopes A and B are 14 and 16 respectively. If 7 electron are present in the atom A, then 26. the number of neutrons in the nucleus of atom B are [MP PMT 1992] (a) 2 (b) 7 (c) 9 (d) 16 When a neutron is disintegrated, it gives 27. [MP PMT 1992] (a) One proton, one electron and one neutrino (b) One positron, on electron and one anti-neutrino (d) One proton, γ rays and one neutrino (c) One proton, one positron and one neutrino 28. "Mass density" of nucleus varies with its mass number A as (c) A^0 (a) A^2 (b) A (d) 1/A The radius of the nucleus with nucleon number 2 is $1.5 \times 10^{-15} m$, then the radius of nucleus with nucleon 29. number 54 will be (b) $4.5 \times 10^{-15} m$ (c) $6 \times 10^{-15} m$ (a) $3 \times 10^{-15} m$ (d) $9 \times 10^{-15} m$ If F_{pp} , F_{pm} and F_{nm} are the magnitudes of net force between proton-proton, proton-neutron and neutron-30. neutron respectively, then (a) $F_{pp} = F_{pn} = F_{nn}$ (b) $F_{pp} < F_{pn} = F_{nn}$ (c) $F_{pp} > F_{pn} > F_{nn}$ (d) $F_{nn} < F_{nn} < F_{nn}$ A nucleus $_{Z}X^{A}$ emits 2α -particles and 3β -particles. The ratio of total protons and neutrons in the final nucleus 31. is (a) $\frac{Z-7}{A-Z+7}$ (b) $\frac{Z-1}{A-Z-8}$ (c) $\frac{Z-1}{A-Z-7}$ (d) $\frac{Z-3}{A-Z+3}$ Mass defect & Binding energy M_p denotes the mass of a proton and M_n that of a neutron. A given nucleus, of binding energy *B*, contains *Z* 32. protons and N neutrons. The mass M(N, Z) of the nucleus is given by (c is the velocity of light) (a) $M(N, Z) = NM_n + ZM_p - BC^2$ (b) $M(N, Z) = NM_n + ZM_n + BC^2$ (d) $M(N, Z) = NM_n + ZM_n + B/C^2$ (c) $M(N,Z) = NM_n + ZM_p - B/C^2$ The binding energy of nucleus is a measure of its 33. [MP PET 2004] (a) Charge (c) Momentum (b) Mass (d) Stability If *M* is the atomic mass and *A* is the mass number, packing fraction is given by 34. [KCET 2004] (d) $\frac{M-A}{\Lambda}$ (b) $\frac{A-M}{A}$ (a) $\frac{A}{M-A}$ (c) $\frac{M}{M-A}$ When an electron-positron pair annihilates, the energy released is about 35. [MP PET/PMT 1988; CBSE 1992; MP PMT 1994; RPET 1997; RPMT 2000; AIIMS 2004] (a) $0.8 \times 10^{-13} J$ (c) $3.2 \times 10^{-13} J$ (d) $4.8 \times 10^{-13} J$ (b) $1.6 \times 10^{-13} J$ The atomic mass unit (*amu*) is equivalent to energy [Similar to CPMT 2001; MP PET/PMT 2001; MP PMT 2004] 36. (a) 93.1 eV (b) 931 MeV (c) 931 keV (d) 931 eV

CLICK HERE

Get More Learning Materials Here :

Nuclear Physics & Radioactivity 109

37.		th and the sun is $1.5 \times 10^{11} m$.		Th is 1.4 kW/m^2 . The average st per day by the sun is (1 day
	(a) 4.4×10^9	(b) 7.6×10^{14}	(c) 3.8×10^{12}	(d) 3.8×10^{14}
38.	Energy obtained when 1 n	ng mass is completely convert	ed to energy is	
	(a) $3 \times 10^8 J$	(b) $3 \times 10^{10} J$	(c) $9 \times 10^{13} J$	(d) $9 \times 10^{15} J$
39.	The energy liberated on c	complete fission of 1 kg of $_{92}U$	²³⁵ is (Assume 200 <i>MeV</i> er	nergy is liberated on fission of
	1 nucleus)			
			[]	RPET 1999, 2000; UPSEAT 2003]
	(a) $8.2 \times 10^{10} J$	(b) $8.2 \times 10^9 J$	(c) $8.2 \times 10^{13} J$	(d) $8.2 \times 10^{16} J$
40.	The mass defect in a pa hours is (Velocity of ligh		0.3 gm. The amount of e	energy liberated in kilowatt
	(a) 1.5×10^{6}	(b) 2.5×10^{6}	(c) 3×10^{6}	(d) 7.5×10^6
41.	The binding energy per n	ucleon is maximum in the case	e of	
	(a) ${}^{2}_{4}He$	(b) $\frac{56}{26}Fe$	(c) $^{141}_{56}Ba$	(d) $\frac{235}{92}U$
42.	Binding energy per nucleo is correct	on plot against the mass num	ber for stable nuclei is sho	wn in the figure. Which curve
	(a) <i>A</i>		ing V ner	C D [Orissa JEE 2002]

(b) *B*

(c) C

(d) D

47.

- The rest mass of an electron as well as that of positron is 0.51 MeV. When an electron and positron are 43. annihilate, they produce gamma-rays of wavelength(s) (a) 0.012 Å
- (b) 0.024 Å (c) 0.012 \AA to ∞ (d) 0.024 Å to ∞ If the energy released in the fission of one nucleus is $3.2 \times 10^{-11} J$, then number of nuclei required per second in 44. a power plant of 16 *kW* is [KCET 2000; CPMT 2001]
 - (a) 5×10^{14}
- M_n and M_p represent mass of neutron and proton respectively. If an element having atomic mass M has N-45. neutron and Z-proton, then the correct relation will be

(c) 0.5×12^{12}

- (c) $M = [NM_n + ZM_P]$ (a) $M < [NM_n + ZM_P]$ (b) $M > [NM_n + ZM_P]$ (d) $M = N[M_n + M_P]$ An element has binding energy 8 eV/nucleon. If it has total binding energy 128 eV, then the number of nucleons 46. are (QBP 314)
 - [CPMT 2001]
 - (a) 8 (b) 14 (c) 16 (d) 32 If the binding energy per nucleon in Li^7 and He^4 nuclei are respectively 5.60 MeV and 7.06 MeV, then energy of reaction $Ll^7 + p \rightarrow 2_2He^4$ is
- [CBSE 1994; JIPMER 2000] (a) 19.6 MeV (c) 8.4 MeV (b) 2.4 *MeV* (d) 17.3 MeV If 200 *MeV* energy is released in the fission of a single U^{235} nucleus, the number of fissions required per second 48. to produce 1 *Kilowatt* power shall be (Given 1 $eV = 1.6 \times 10^{-19} J$)

CLICK HERE

(a) 3.125×10^{13} (b) 3.125×10^{14} (c) 3.125×10^{15}

(b) 5×10^{12}

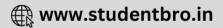
 $M_P = 1.008 \text{ amu}, Mn = 1.009 \text{ amu}$ and $M_2He^4 = 4.003 \text{ amu}$ then the binding energy of α -particle is 49.

Bindi Mass number

(d) 0.5×10^{14}

(d) 3.125×10^{16}

Get More Learning Materials Here :


			Nuclear P	hysics & Radioactivity 111
	(a) 21.4 <i>MeV</i>	(b) 8.2 <i>MeV</i>	(c) 34 <i>MeV</i>	(d) 28.8 <i>MeV</i>
0 .	The rest energy of an ele in its energy will be	ectron is 0.511 <i>MeV</i> . The electr	on is accelerated from rest	to a velocity 0.5 c. The chang
				[MP PET 1996
	(a) 0.026 <i>MeV</i>	(b) 0.051 <i>MeV</i>	(c) 0.079 <i>MeV</i>	(d) 0.105 <i>MeV</i>
1.	The binding energy per a remove a neutron from (nucleon of O ¹⁶ is 7.97 <i>MeV</i> and O ¹⁷ is	l that of <i>O</i> ¹⁷ is 7.75 <i>MeV</i> . Th	e energy (in <i>MeV</i>) required
	(a) 3.52	(b) 3.64	(c) 4.23	(d) 7.86
2.		r nucleon for a deuteron and reaction $_{1}H^{2} + _{1}H^{2} \rightarrow _{2}He^{4} + Q$	an α -particle are x_1 and x_2	respectively. What will be th
	(a) 4 ($x_1 + x_2$)	(b) 4 ($x_2 - x_1$)	(c) 2 $(x_1 + x_2)$	(d) 2 ($x_2 - x_1$)
53.	A star initially has 10^{40} c $_1H^2 + _1H^2 \rightarrow _1H^3 + p$	leuterons. It produces energy	via the processes	
	${}_1H^2 + {}_1H^3 \rightarrow {}_2He^4 + n$			
	The masses of the nuclei	are as follows : $M(H^2) = 2.01$	4 $amu; M(p) = 1.007 amu$;	
		$M(n) = 1.008 \ amu; M(n)$	He^4) = 4.001 <i>amu</i>	
	If the average power ra of the order of	diated by the star is 10^{16} W.	The deuteron supply of th	e star is exhausted in a tin
				[IIT-JEE 199
	(a) 10^6 sec	(b) $10^8 sec$	(c) 10^{12} sec	(d) 10^{16} sec
4.	If two nuclei of masses r	n_1 and m_2 fused to form a nucle	eus of mass <i>m</i> and some ene	ergy is released, then
	(a) $(m_1 + m_2) > m$	(b) $(m_1 + m_2) < m$	(c) $m_1 + m_2 = m$	(d) $m_1 - m_2 = m$
5.	What is the binding ener	gy per nucleon of hydrogen nu	icleus	
			(c) 7.5 <i>MeV</i>	(d) 8.5 <i>MeV</i>
	(a) 0	(b) ∞	(c) 7.3 mev	
_	(a) 0			
	(a) O			
;6.			ear reaction, Nuclear Fis	ssion and Nuclear Fusion
;6.		Nucl	ear reaction, Nuclear Fis	ar to CPMT 2003; MP PET 2004 (d) No effect on neutrons
	The function of the contr	Nucle rol rods in nuclear reactor is (b) Accelerate neutrons	ear reaction, Nuclear Fis	ar to CPMT 2003; MP PET 200 (d) No effect on neutrons
	The function of the contr (a) Absorb neutrons	Nucle rol rods in nuclear reactor is (b) Accelerate neutrons	ear reaction, Nuclear Fis	ar to CPMT 2003; MP PET 200 (d) No effect on neutrons
57.	The function of the contr (a) Absorb neutrons Complete the reaction <i>n</i>	Nuclear rol rods in nuclear reactor is (b) Accelerate neutrons $+\frac{235}{92} U \rightarrow \frac{144}{56} Ba + + 3n$	ear reaction, Nuclear Fis [Simil (c) Slow down neutrons	ar to CPMT 2003; MP PET 2004 (d) No effect on neutrons [Kerala PMT 2004 (d) $^{92}_{36}Kr$
57.	The function of the contr (a) Absorb neutrons Complete the reaction n (a) $\frac{89}{36}Kr$	Nuclear rol rods in nuclear reactor is (b) Accelerate neutrons $+\frac{235}{92} U \rightarrow \frac{144}{56} Ba + + 3n$ (b) $\frac{90}{36} Kr$	ear reaction, Nuclear Fis [Simil (c) Slow down neutrons (c) ${}^{91}_{36}Kr$	ar to CPMT 2003; MP PET 2004 (d) No effect on neutrons [Kerala PMT 2004 (d) $^{92}_{36}Kr$
7.	The function of the contr (a) Absorb neutrons Complete the reaction n (a) $\frac{89}{36}Kr$ Heavy water is	Nuclear rol rods in nuclear reactor is (b) Accelerate neutrons $+^{235}_{92} U \rightarrow ^{144}_{56} Ba + + 3n$ (b) $^{90}_{36} Kr$	ear reaction, Nuclear Fis [Simil (c) Slow down neutrons (c) ${}^{91}_{36}Kr$	ar to CPMT 2003; MP PET 200 (d) No effect on neutrons [Kerala PMT 200 (d) $^{92}_{36}Kr$ [KCET 200
57. 58.	The function of the contr (a) Absorb neutrons Complete the reaction n (a) $\frac{89}{36}Kr$ Heavy water is (a) Water, in which soap (c) Compound of deuter	Nuclear rol rods in nuclear reactor is (b) Accelerate neutrons $+^{235}_{92} U \rightarrow ^{144}_{56} Ba + + 3n$ (b) $^{90}_{36} Kr$ p does not lather ium and oxygen	ear reaction, Nuclear Fis [Simil (c) Slow down neutrons (c) $\frac{91}{36}Kr$ (b) Compound of heavy of	ar to CPMT 2003; MP PET 2004 (d) No effect on neutrons [Kerala PMT 2004 (d) $^{92}_{36}$ Kr [KCET 2004 (by gen and heavy hydrogen
57. 58.	The function of the contr (a) Absorb neutrons Complete the reaction n (a) $\frac{89}{36}Kr$ Heavy water is (a) Water, in which soap	Nuclear rol rods in nuclear reactor is (b) Accelerate neutrons $+^{235}_{92} U \rightarrow ^{144}_{56} Ba + + 3n$ (b) $^{90}_{36} Kr$ p does not lather ium and oxygen	ear reaction, Nuclear Fis [Simil (c) Slow down neutrons (c) $\frac{91}{36}Kr$ (b) Compound of heavy of	ar to CPMT 2003; MP PET 2004 (d) No effect on neutrons [Kerala PMT 2004 (d) $^{92}_{36}$ Kr [KCET 2004 (by gen and heavy hydrogen
57. 58.	The function of the contr (a) Absorb neutrons Complete the reaction n (a) $\frac{89}{36}Kr$ Heavy water is (a) Water, in which soap (c) Compound of deuter The nuclear reactor at K (a) Breeder reactor	Nuclear rol rods in nuclear reactor is (b) Accelerate neutrons $+^{235}_{92} U \rightarrow ^{144}_{56} Ba + + 3n$ (b) $^{90}_{36} Kr$ p does not lather ium and oxygen aiga is a	ear reaction, Nuclear Fis [Simil (c) Slow down neutrons (c) $\frac{91}{36}Kr$ (b) Compound of heavy of (d) Water at $4^{\circ}C$	ar to CPMT 2003; MP PET 200 (d) No effect on neutrons [Kerala PMT 200 (d) $^{92}_{36}Kr$ [KCET 200 oxygen and heavy hydrogen [KCET 200 (d) Fusion reactor
57. 58.	The function of the contr (a) Absorb neutrons Complete the reaction n (a) $\frac{89}{36}Kr$ Heavy water is (a) Water, in which soap (c) Compound of deuter The nuclear reactor at K (a) Breeder reactor	Nuclear rol rods in nuclear reactor is (b) Accelerate neutrons $+^{235}_{92} U \rightarrow ^{144}_{56} Ba + + 3n$ (b) $^{90}_{36} Kr$ c) does not lather ium and oxygen aiga is a (b) Power reactor ed chain reaction is used in	ear reaction, Nuclear Fis [Simil (c) Slow down neutrons (c) $\frac{91}{36}Kr$ (b) Compound of heavy of (d) Water at $4^{\circ}C$	ar to CPMT 2003; MP PET 200 (d) No effect on neutrons [Kerala PMT 200 (d) ${}^{92}_{36}Kr$ [KCET 200 (d) ${}^{92}_{36}Kr$ [KCET 200 (d) Fusion reactor [Orissa JEE 200
56. 57. 58. 59. 50.	The function of the contr (a) Absorb neutrons Complete the reaction n (a) $\frac{89}{36}Kr$ Heavy water is (a) Water, in which soap (c) Compound of deuter The nuclear reactor at K (a) Breeder reactor The principle of controll	Nuclear rol rods in nuclear reactor is (b) Accelerate neutrons $+^{235}_{92} U \rightarrow ^{144}_{56} Ba + + 3n$ (b) $^{90}_{36} Kr$ p does not lather ium and oxygen aiga is a (b) Power reactor ed chain reaction is used in or (b) Atom bomb	ear reaction, Nuclear Fis [Simil (c) Slow down neutrons (c) $\frac{91}{36}Kr$ (b) Compound of heavy of (d) Water at $4^{\circ}C$ (c) Research reactor	ar to CPMT 2003; MP PET 2004 (d) No effect on neutrons [Kerala PMT 2004 (d) $^{92}_{36}Kr$ [KCET 2004 (c) $^{92}_{36}Kr$ [KCET 2004

Get More Learning Materials Here : 📕

r www.studentbro.in

	(a) $_{8}N^{17}$	(b) $_{8}O^{17}$	(c) $_7 O^{16}$	(d) $_7 N^{16}$	
2.	What was the fissionable	e material used in bomb drop	oped at Nagasaki (Japan) i	n the year 1945	
				[MNR 1985; UPSEAT 2003]	
	(a) Uranium	(b) Nepturium	(c) Berkalium	(d) Plutonium	
3.		the mass number of an atom	•		
	(a) A photon	(b) A neutron	(c) β -particle	(d) An α -particle	
4.	Light energy emitted by	stars is due to [M		CBSE 1992; EAMCET (Engg.) 1995;	
				3; DCE 1999, 2000; Orissa JEE 2003]	
	(a) Breaking of nuclei	(b) Joining of nuclei	(c) Burning of nuclei	(d) Reflection of solar light	
5.	A nuclear reaction given	by $_{Z}X^{A} \rightarrow _{Z+1}Y^{A} +_{-1}e^{0} + \overline{p}$ rep	oresents		
	(a) γ-decay	(b) Fusion	(c) Fission	(d) β -decay	
6.	Solar energy is mainly ca	aused due to		[CBSE PMT 2003]	
lem	(a) Fission of uranium p ents	resent in the sun	(b) Fusion of proto	ns during synthesis of heavier	
	(c) Gravitational contra	ction	(d)	Burning of hydrogen in the	
xyg					
7.	Find the wrong statemer	ıt		[TNPCEE 2002]	
	(a) Half-life of a neutron is 13 minutes				
	(b) The stability of a nuc	cleus is determined by the nu	umber of neutrons present	in it	
	(c) Both fast and slow n	eutrons are capable of penet	rating a nucleus		
	(d) A free neutrons deca	ys into a proton, an electron	and positron		
8.	Fusion reaction is initiat	ed with the help of		[DPMT 2002]	
	(a) Low temperature	(b) High temperature	(c) Neutrons	(d) Any particle	
9.	In nuclear fission the per	rcentage of mass converted i	nto energy is about		
	(a) 10%	(b) 0.01%	(c) 0.1%	(d) 1%	
) .	If the speed of light we decreased by a fraction	re 2/3 of its present value,		a given atomic explosion will be	
				2002; Kerala PET 2002; AFMC 2003]	
	(a) 2/3	(b) 4/9	(c) $3/4$	(d) 5/9 dereter is	
1.	-	noderator in a nuclear reacto		derator 1s , 2003; CBSE PMT 2002; IIMS 2003]	
	(a) To control the energy			ns and stop chain reaction	
	(c) To cool the reactor fa	·	(d)	To slow down the neutrons	
	to thermal energies				
2.	The nuclear reaction ${}^{2}H$	$+^{2}H \rightarrow {}^{4}He$ (mass of deutero	n = 2.0141 <i>a.m.u</i> . and mas	s of <i>He</i> = 4.0024 a.m.u.) is [Oriss	
	(a) Fusion reaction relea	asing 24 <i>MeV</i> energy	(b) Fusion reaction a	bsorbing 24 <i>MeV</i> energy	
	(c) Fission reaction rele	asing 0.0258 <i>MeV</i> energy	(d) Fission reaction a	bsorbing 0.0258 <i>MeV</i> energy	
_	A deutron is bombarded	on ${}_{8}O^{16}$ nucleus and $lpha$ -parti	cle is emitted. The produc	t nucleus is	
3.					

Get More Learning Materials Here : 💻

²²Ne nucleus after absorbing energy decays into two α -particles and an unknown nucleus. The unknown 74. nucleus is [IIT-JEE 1999; UPSEAT 2002] (a) Nitrogen (b) Carbon (c) Boron (d) Oxygen In atom bomb the reaction which occurs is 75. [BHU 2001] (c) Uncontrolled fission (a) Fusion (b) Controlled fission (d) Thermonuclear 76. In an atomic bomb, the energy is released due to [AIIMS 2001] (a) Chain reaction of neutrons and $_{92}U^{235}$ (b) Chain reaction of neutrons and $_{92} U^{238}$ (d) Chain reaction of neutrons and $_{92} U^{236}$ (c) Chain reaction of neutrons and $_{92}Pu^{240}$ In the reaction $X(n,\alpha)_3^7 Li$, X will be 77. (a) ${}^{10}_{5}B$ (b) ${}_{5}^{9}B$ (c) ${}^{11}_{4}Be$ (d) ${}^{2}_{4}He$ Energy released in nuclear fission is due to 78. [CBSE PM/PD 2001] (a) Few mass is converted into energy (b) Total binding energy of fragments is more than the B.E. of parental element (c) Total B.E. of fragments is less than the B.E. of parental element (d) Total B.E. of fragments is equal to the B.E. of parental element Which one is not possible [CPMT 2001] 79. (a) $_{7}N^{14} + _{0}n^{1} \rightarrow _{7}N^{16} + _{1}H^{1}$ (b) $_{16}S^{32} + _{1}H^{1} \rightarrow _{17}Cl^{35} + _{2}He^{4}$ (c) ${}_{8}O^{16} + {}_{0}n^{1} \rightarrow {}_{7}N^{14} + 3 {}_{1}H^{1} + 2 {}_{-1}\beta^{0}$ (d) $_{1}H^{1} + _{1}H^{1} \rightarrow _{2}He^{4}$ $_{16}S^{32} + _{0}n^{1} \rightarrow X + _{2}He^{4}, X$ is 80. [CPMT 2001] (c) $_{14}Si^{29}$ (a) ${}_{16}S^{28}$ (b) $_{14}N^7$ (d) ${}_{16}S^{29}$ The polonium isotope $\frac{210}{84}$ Po is unstable and emits a 10 MeV alpha particle. The atomic mass of $\frac{210}{84}$ Po is 209.983 81. U and that ${}^{4}_{2}He$ is 4.003 U. The atomic mass of the daughter nucleus is (a) 210 U (b) 208 U (c) 82.0 U (d) None of these When two deuterium nuclei fuse together to form a tritium nuclei, we get a 82. [EAMCET 1994; CPMT 2000; CPMT 2000] (a) Neutron (b) Deutron (c) α -particle (d) Proton The average number of prompt neutrons produced per fission of U^{235} is 83. [MP PMT 2000] (a) More than 5 (b) 3 to 5 (c) 2 to 3 (d) 1 to 2 84. Nuclear fission experiments show that the neutrons split the uranium nuclei into two fragments of about same size. This process is accompanied by the emission of several [CBSE 1994; SCRA 1994; DPMT 2000] (a) Protons and positrons (b) α – particles (c) Neutrons (d) Protons and α – particles To generate a power of 3.2 mega watt, the number of fissions of U^{235} per minute is 85. (Energy released per fission = 200*MeV*, $1eV = 1.6 \times 10^{-19} J$) (a) 6×10^{18} (b) 6×10^{17} (c) 10^{17} (d) 6×10^{16} Atomic hydrogen has its life period of 86. [CBSE PMT 2000] (d) One minute (a) One day (b) A fraction of a second (c) One hour 87. It is possible to understand nuclear fission on the basis of the

CLICK HERE

Get More Learning Materials Here : 🌉

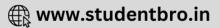
🤌 🌐 🕀 www.studentbro.in

88.	 (a) Meson theory of the n (c) Independent particle If <i>E</i>₁ is the energy release 		(b) Proton-proton cyc(d) Liquid drop modefusion and E₂ that in nuc	el of the nucleus
	(a) $E_1 < E_2$	(b) $E_1 > E_2$	(c) $E_1 = -E_2$	(d) $E_1 = E_2$
89.	When $\frac{235}{92}U$ is bombarded	l with one neutron, the fissic	on occurs and the product	s are three neutrons, $\frac{94}{36}$ Kr , and [UPSEA
	(a) $\frac{139}{54} Xe$	(b) $^{139}_{58}Ce$	(c) $\frac{139}{56} Ba$	(d) $^{142}_{53}I$
90.	In the carbon cycle, from	which stars hotter than the	Sun obtain their energy,	the ${}_{6}^{12}C$ isotope
	(a) Splits into three alph nucleus to form ${}_{12}Mg^{24}$	a particles	(b)	Fuse with another ${}_{6}C^{12}$
	(c) Is completely convert	ted into energy	(d) Is regenerated at	the end of the cycle
91.	In the following nuclear	reaction ${}_{6}C^{11} \rightarrow {}_{5}B^{11} + \beta^{+} + X$	what does X stand for	[CEET 1998; CPMT 2000]
	(a) A proton	(b) A neutron	(c) A neutrino	(d) An electron
92.	Fusion reaction takes pla 1999]	ce at high temperature beca	use	[CPMT 1980; SCRA 1996; RPET
	(a) Atoms are ionized at	high temperature		
	(b) Molecules break-up a	at high temperature		
	(c) Nuclei break-up at hi	gh temperature		
	(d) Kinetic energy is high	h enough to overcome repuls	ion between nuclei	
02	The overage kinetic e			
93.	$K_B = 8 \times 10^{-5} eV / \text{Kelvin}$	nergy of the thermal ne	utrons is of the orde	r of (Boltzmann's constant
93.	•	nergy of the thermal ne	utrons is of the orde	r of (Boltzmann's constant [MP PET 1993; AMU (Engg.) 1999]
93.	•	nergy of the thermal ne (b) 3 <i>eV</i>	utrons is of the orde (c) 3 <i>KeV</i>	
	$K_B = 8 \times 10^{-5} eV / \text{Kelvin}$ (a) 0.03 eV		(c) 3 <i>KeV</i>	[MP PET 1993; AMU (Engg.) 1999] (d) 3 <i>MeV</i>
	$K_B = 8 \times 10^{-5} eV / \text{Kelvin}$ (a) 0.03 eV	(b) 3 <i>eV</i>	(c) 3 <i>KeV</i> to the use of nuclear wea	[MP PET 1993; AMU (Engg.) 1999] (d) 3 <i>MeV</i> apons is called
	$K_B = 8 \times 10^{-5} eV / \text{Kelvin}$ (a) 0.03 eV The large scale destruction (a) Nuclear holocaust Which of these is a fusion	(b) 3 <i>eV</i> on, that would be caused due (b) Thermo-nuclear react	(c) 3 <i>KeV</i> e to the use of nuclear wea ion (c) Neutron reproduc	[MP PET 1993; AMU (Engg.) 1999] (d) 3 <i>MeV</i> apons is called ction factor (d)
	$K_B = 8 \times 10^{-5} eV / \text{Kelvin}$ (a) 0.03 eV The large scale destruction (a) Nuclear holocaust	(b) 3 <i>eV</i> on, that would be caused due (b) Thermo-nuclear react	(c) 3 <i>KeV</i> to the use of nuclear wea	[MP PET 1993; AMU (Engg.) 1999] (d) 3 <i>MeV</i> apons is called ction factor (d)
	$K_B = 8 \times 10^{-5} eV / \text{Kelvin}$ (a) 0.03 eV The large scale destruction (a) Nuclear holocaust Which of these is a fusion	(b) 3 <i>eV</i> on, that would be caused due (b) Thermo-nuclear react	(c) 3 <i>KeV</i> e to the use of nuclear wea ion (c) Neutron reproduc	[MP PET 1993; AMU (Engg.) 1999] (d) 3 <i>MeV</i> apons is called tion factor (d)
94. 95.	$K_B = 8 \times 10^{-5} eV / \text{Kelvin})$ (a) 0.03 eV The large scale destruction (a) Nuclear holocaust Which of these is a fusion (a) ${}^1_3H + {}^1_2H = {}^2_4He + {}^0_1n$ (c) ${}^1_7C \rightarrow {}^{12}_6C + \beta^+ + \gamma$ A photon of 1.7×10^{-13} Jou (a) Electrons of the atom (b) Electron and positron (c) Only positron will be	(b) 3 <i>eV</i> on, that would be caused due (b) Thermo-nuclear react n reaction alles is absorbed by a materia n of absorbed material will gen pair will be created produced	(c) 3 <i>KeV</i> e to the use of nuclear weation (c) Neutron reproduct (b) ${}^{238}_{92}U \rightarrow {}^{206}_{82}Pb + 8({}^4_2 +$ (d) None of these l under special circumstation to the higher energy statistical statements of the second statement of the seco	[MP PET 1993; AMU (Engg.) 1999] (d) 3 <i>MeV</i> apons is called ation factor (d) $He) + 6 \begin{pmatrix} 0 \\ -1 \end{pmatrix} \beta$ nces. The correct statements is [MP PE
93. 94. 95. 96.	$K_B = 8 \times 10^{-5} eV / \text{Kelvin})$ (a) 0.03 eV The large scale destruction (a) Nuclear holocaust Which of these is a fusion (a) $\frac{1}{3}H + \frac{1}{2}H = \frac{2}{4}He + \frac{1}{1}n$ (c) $\frac{12}{7}C \rightarrow \frac{12}{6}C + \beta^+ + \gamma$ A photon of 1.7×10^{-13} Jour (a) Electrons of the atom (b) Electron and positron (c) Only positron will be (d) Photon-electric effect	 (b) 3 eV on, that would be caused due (b) Thermo-nuclear react n reaction ales is absorbed by a materia n of absorbed material will generated produced t will occur and electron will or the following fission proce 	(c) 3 <i>KeV</i> e to the use of nuclear weation (c) Neutron reproduct (b) $\frac{238}{92}U \rightarrow \frac{206}{82}Pb + 8(\frac{4}{2}+3)$ (d) None of these l under special circumstation to the higher energy states be produced	[MP PET 1993; AMU (Engg.) 1999] (d) 3 <i>MeV</i> apons is called ation factor (d) $He) + 6 \begin{pmatrix} 0 \\ -1 \end{pmatrix} \beta$ nces. The correct statements is [MP PE
94. 95. 96.	$K_B = 8 \times 10^{-5} eV / \text{Kelvin})$ (a) 0.03 eV The large scale destruction (a) Nuclear holocaust Which of these is a fusion (a) ${}^{1}_{3}H + {}^{1}_{2}H = {}^{2}_{4}He + {}^{0}_{1}n$ (c) ${}^{12}_{7}C \rightarrow {}^{12}_{6}C + \beta^{+} + \gamma$ A photon of 1.7×10^{-13} Jou (a) Electrons of the atom (b) Electron and positron (c) Only positron will be (d) Photon-electric effect	 (b) 3 eV on, that would be caused due (b) Thermo-nuclear react a reaction a les is absorbed by a materia a of absorbed material will generated b produced t will occur and electron will b or the following fission proce 	(c) 3 <i>KeV</i> e to the use of nuclear weation (c) Neutron reproduct (b) $\frac{238}{92}U \rightarrow \frac{206}{82}Pb + 8(\frac{4}{2}+3)$ (d) None of these l under special circumstation to the higher energy states be produced	[MP PET 1993; AMU (Engg.) 1999] (d) 3 <i>MeV</i> apons is called ttion factor (d) $He) + 6 \begin{pmatrix} 0 \\ -1 \end{pmatrix} \beta$ nces. The correct statements is [MP PE ttes
94. 95. 96.	$K_{B} = 8 \times 10^{-5} eV / \text{Kelvin})$ (a) 0.03 eV The large scale destruction (a) Nuclear holocaust Which of these is a fusion (a) ${}_{3}^{1}H + {}_{2}^{1}H = {}_{4}^{2}He + {}_{1}^{0}n$ (c) ${}_{7}^{12}C \rightarrow {}_{6}^{12}C + \beta^{+} + \gamma$ A photon of 1.7×10^{-13} Jou (a) Electrons of the atom (b) Electron and positron (c) Only positron will be (d) Photon-electric effect Complete the equation for ${}_{92}U^{235} + {}_{0}n^{1} \rightarrow \dots {}_{38}Kr^{90} + \dots$	 (b) 3 <i>eV</i> (b) Thermo-nuclear react (b) Thermo-nuclear react (b) Thermo-nuclear react (c) Thermo-nuclear react 	(c) 3 <i>KeV</i> e to the use of nuclear weation (c) Neutron reproduct (b) ${}^{238}_{92}U \rightarrow {}^{206}_{82}Pb + 8({}^4_2, {}^4_3, {}^6_4)$ (d) None of these 1 under special circumstation to the higher energy states be produced ess	[MP PET 1993; AMU (Engg.) 1999] (d) 3 <i>MeV</i> apons is called ation factor (d) $He) + 6 \begin{pmatrix} 0 \\ -1 \end{pmatrix} \beta$ nces. The correct statements is [MP PE ates [CBSE 1998]

Get More Learning Materials Here : 💻

CLICK HERE

Nuclear Physics & Radioactivity 115 (c) Two $_{1}H^{2}$ fuse to form $_{2}He^{4}$ (d) Four $_{1}H^{2}$ fuse to form $_{2}He^{4}$ and two positrons In the reaction $_7N^{14} + _2He^{14} \rightarrow _8O^{17} + _1H^1$ the minimum energy of the α -particle is 99. $(M_N = 14.00307 \text{ amu}, M_{He} = 4.0026 \text{ amu} \text{ and } M_O = 16.99914 \text{ amu}, M_H = 1.00783 \text{ amu} \text{ and } 1 \text{ amu} = 931 \text{ MeV}$) [EAMCET (Engg.) 1998] (a) 1.21 *MeV* (b) 1.62 MeV (c) 1.89 *MeV* (d) 1.96 MeV **100.** A nuclear reaction $n \rightarrow p + e^{-1} + \overline{v}$, if masses of proton, neutron and electron are respectively 1.6725×10^{-27} , 1.6747×10^{-27} and $9 \times 10^{-31} kg$ then emitted energy will be [RPET 1998] (a) 0.51 *MeV* (b) 0.73 MeV (c) 1.02 MeV (d) 4.21 MeV **101.** For the construction of nuclear-bomb which of the following substances is taken [CPMT 1998] (b) Pu-239 (c) F-14 (d) Both (a) and (b) (a) U-235 **102.** (QBP-588) Consider the fission reaction $_{92}U^{236} \rightarrow X^{117} + Y^{117} + n + n$ *i.e.*, two nuclei of same mass number 117 are found plus two neutrons. The binding energy per nucleon of X and Y is 8.5 MeV whereas of U^{236} is 7.6 MeV. The total energy liberated will be about [CPMT 1976; CBSE 1997] (a) 2 *MeV* (b) 20 *MeV* (c) 200 *MeV* (d) 2000 MeV The capacity of Tarapur Atomic Power Station is 200 MW. The energy produced at this station in one day will 103. he [NCERT 1975; RPET 1996] (c) $1728 \times 10^{10} J$ (a) 200 J (b) 200 *M* Cal. (d) None of these **104.** A reaction between a proton and ${}_{8}O^{18}$ that produces ${}_{9}F^{18}$ must also liberate (QBP-740) (a) $_{0}n^{1}$ (b) $_{1}e^{0}$ (c) $_{1}n^{0}$ (d) $_{0}e^{1}$ **105.** Which of the following statements is (are) correct [IIT-JEE 1994] (a) The rest mass of a stable nucleus is less than the sum of the rest masses of its separated nucleons (b) The rest mass of a stable nucleus is greater than the sum of the rest masses of its separated nucleon (c) In nuclear fusion, energy is released by fusing two nuclei of medium mass (approximately 100 amu) (d) In nuclear fission, energy is released by fragmentation of a very heavy nucleus **106.** In the following reaction ${}_{12}Mg^{24} + {}_{2}He^4 \rightarrow {}_{14}Si^x + {}_{0}n^1 x$ is (a) 28 (b) 27 (c) 26 (d) 22 **107.** A slow neutron (*n*) is captured by a $\frac{235}{92}U$ nucleus forming a highly unstable $\frac{236}{92}U^*$ (where * denotes that the nucleus is in an excited state). The fission of the nucleus occurs by (b) ${}^{236}_{92}U^* \rightarrow {}^{140}_{54}Xe + {}^{94}_{38}Sr + 4n + Q$ (a) ${}^{236}_{92}U^* \rightarrow {}^{140}_{50}Sn + {}^{89}_{42}MO + 6n + Q$ (c) $^{236}_{92}U^* \rightarrow ^{144}_{52}Te + ^{89}_{42}MO + 3n + Q$ (d) ${}^{236}_{92}U^* \rightarrow {}^{144}_{56}Ba + {}^{89}_{36}Kr + 3n + Q$ 108. For an atomic reactor being critical the ratio (r) of the average number of neutrons produced and used in chain reaction [NCERT 1990] (a) Is less than one (b) Is equal to one (d) Depends upon the mass of the fissionable material (c) Is greater than one **109.** The following nuclear reaction shows : $4_1H^1 \rightarrow {}_2He^4 + 2_1e^0 + 26MeV$ (c) Transformation of element (d)Scattering of α – particle (a) Fission (b) Fusion


CLICK HERE

Get More Learning Materials Here : 📕

🕀 www.studentbro.in

10		r woight				
10.	Heavy water has molecula	1 weight				
	(a) 20	(b) 18	(c) 19	(d) 36		
1.	Four physical quantities are listed in column I. Their values are listed in column II in a random order					
	Column I					
	(A) Thermal energy of air of heavy nuclei	molecules at room temperat	ure (B)	Binding energy per nucleon		
	(C) X-ray photon energy		(D) Photon energy of vi	isible light		
	Column II					
	(E) 0.02 <i>eV</i>	(F) 2 <i>eV</i>	(G) 1 keV	(H) 7 <i>MeV</i>		
	The correct matching of co	olumn I and column II is give	en by			
	(a) A - E, B - H, C - G, D - H (d)	- F (b) A - F, B - H, C - E, D -G	A – E, B – G, C – F, D – 1	H (c) A - F, B - E, C - G, D -		
1 2.	Most suitable element for	nuclear fission is the elemen	nt with atomic number nea	ar [CPMT 1982]		
	(a) 11	(b) 21	(c) 52	(d) 92		
3.	A free electron can give ri	se to the following decay (w	here γ is a quantum of E.	M. field)		
	(a) $e^- \rightarrow e^+$	(b) $e^- \rightarrow e^- + \gamma$	(c) $e^- \rightarrow e^-$	(d) $e^- \rightarrow \mu^-$		
14.	Assuming that about 20 A	<i>NeV</i> of energy is released p	er fusion reaction $_{1}H^{2} + _{1}H$	$H^2 \rightarrow {}_0n^1 + {}_2He^3$ then the mass of		
-	•	a fusion reactor of power 1 i		• -		
	(a) 0.001 <i>q</i>	(b) 0.1 g	(c) 10.0 <i>q</i>	(d) 1000 <i>q</i>		
		-				
_	115. If mass of $U^{235} = 235.12142$ amu., mass of $U^{236} = 236.12305$ amu and mass of neutron = 1.0086 energy required to remove one neutron from the nucleus U^{236} is nearly about					
15.				1 tron = 1.008665 <i>amu</i> . Then the		
15.	energy required to remove	e one neutron from the nucle	eus U^{236} is nearly about	-		
15.				(d) Zero		
15.	energy required to remove	e one neutron from the nucle	eus U^{236} is nearly about	-		
15.	energy required to remove	e one neutron from the nucle	eus U^{236} is nearly about	(d) Zero		
15.	energy required to remove	e one neutron from the nucle	eus U^{236} is nearly about	(d) Zero		
	energy required to remove (a) 75 <i>MeV</i>	e one neutron from the nucle (b) 6.5 <i>MeV</i>	eus U ²³⁶ is nearly about (c) 1 eV	(d) Zero Radioactivity		
	energy required to remove (a) 75 <i>MeV</i> A radioactive decay chai	e one neutron from the nucle (b) 6.5 <i>MeV</i>	eus U ²³⁶ is nearly about (c) 1 eV	(d) Zero		
	energy required to remove (a) 75 <i>MeV</i>	e one neutron from the nucle (b) 6.5 <i>MeV</i>	eus U ²³⁶ is nearly about (c) 1 eV	(d) Zero Radioactivity		
	energy required to remove (a) 75 <i>MeV</i> A radioactive decay chai	e one neutron from the nucle (b) $6.5 MeV$ n starts from ${}_{93}Np^{237}$ and	eus U ²³⁶ is nearly about (c) 1 eV	(d) Zero Radioactivity cessive emissions. The emitted [MP PMT 2004]		
	energy required to remove (a) 75 <i>MeV</i> A radioactive decay chair particles can be (a) Two <i>α</i> -particles and or	e one neutron from the nucle (b) 6.5 <i>MeV</i> n starts from ${}_{93}Np^{237}$ and ne β^- particle	eus U^{236} is nearly about (c) 1 eV produces $_{90}Th^{229}$ by succ (b) Three β^+ particles	(d) Zero Radioactivity cessive emissions. The emitted [MP PMT 2004]		
16.	energy required to remove (a) 75 <i>MeV</i> A radioactive decay chair particles can be (a) Two α -particles and or (c) One α particle and two	e one neutron from the nucle (b) 6.5 <i>MeV</i> n starts from ${}_{93}Np^{237}$ and he β^- particle o β^+ particles	eus U^{236} is nearly about (c) 1 <i>eV</i> produces $_{90}Th^{229}$ by succ (b) Three β^+ particles (d) One α particle and β^+	(d) Zero Radioactivity cessive emissions. The emitted [MP PMT 2004]		
16.	energy required to remove (a) 75 <i>MeV</i> A radioactive decay chair particles can be (a) Two α -particles and on (c) One α particle and two A radioactive nucleus under	the one neutron from the nucle (b) 6.5 <i>MeV</i> In starts from ${}_{93}Np^{237}$ and the β^- particle to β^+ particles the ergoes a series of decay according	eus U^{236} is nearly about (c) 1 eV produces $_{90}Th^{229}$ by succ (b) Three β^+ particles (d) One α particle and prding to the scheme	(d) Zero Radioactivity cessive emissions. The emitted [MP PMT 2004]		
	energy required to remove (a) 75 <i>MeV</i> A radioactive decay chair particles can be (a) Two α -particles and or (c) One α particle and two A radioactive nucleus under A = A = A	the one neutron from the nuclei (b) 6.5 <i>MeV</i> In starts from ${}_{93}Np^{237}$ and the β^- particle β^+ particles the generative series of decay according $\alpha \rightarrow A_1 \xrightarrow{\beta} A_2 \xrightarrow{\alpha} A_3 \xrightarrow{\gamma}$	eus U^{236} is nearly about (c) 1 eV produces ${}_{90}Th^{229}$ by succ (b) Three β^+ particles (d) One α particle and product of the scheme $\Rightarrow A_4$	(d) Zero Radioactivity cessive emissions. The emitted [MP PMT 2004] two β ⁻ particles		
.6.	energy required to remove (a) 75 <i>MeV</i> A radioactive decay chair particles can be (a) Two α -particles and on (c) One α particle and two A radioactive nucleus under A = A = A	the one neutron from the nuclei (b) 6.5 <i>MeV</i> In starts from ${}_{93}Np^{237}$ and the β^- particle β^+ particles the generative series of decay according $\alpha \rightarrow A_1 \xrightarrow{\beta} A_2 \xrightarrow{\alpha} A_3 \xrightarrow{\gamma}$	eus U^{236} is nearly about (c) 1 <i>eV</i> produces ${}_{90}Th^{229}$ by succ (b) Three β^+ particles (d) One α particle and particl	(d) Zero Radioactivity cessive emissions. The emitted [MP PMT 2004] two β^- particles		
.6.	energy required to remove (a) 75 <i>MeV</i> A radioactive decay chair particles can be (a) Two α -particles and or (c) One α particle and two A radioactive nucleus under A If the mass number and at	te one neutron from the nucle (b) 6.5 <i>MeV</i> In starts from ${}_{93}Np^{237}$ and the β^- particle β^+ particles the generation of A are 180 and $\alpha \rightarrow A_1 \xrightarrow{\beta} A_2 \xrightarrow{\alpha} A_3 \xrightarrow{\gamma}$	eus U^{236} is nearly about (c) 1 <i>eV</i> produces ${}_{90}Th^{229}$ by succ (b) Three β^+ particles (d) One α particle and ording to the scheme $\Rightarrow A_4$ and 72 respectively, then w [Roorkee 1986; CBSE PM]	(d) Zero Radioactivity cessive emissions. The emitted [MP PMT 2004] two β^- particles that are these number for A_4 T 1995; MP PET 2002; KCET 2003]		
16.	energy required to remove (a) 75 <i>MeV</i> A radioactive decay chair particles can be (a) Two α -particles and or (c) One α particle and two A radioactive nucleus under <i>A</i> — If the mass number and at (a) 172 and 69	the one neutron from the nuclei (b) 6.5 <i>MeV</i> In starts from ${}_{93}Np^{237}$ and the β^- particle β^+ particles the goes a series of decay accord $\frac{\alpha}{2} \rightarrow A_1 \xrightarrow{\beta} A_2 \xrightarrow{\alpha} A_3 \xrightarrow{\gamma}$ romic number of <i>A</i> are 180 at (b) 174 and 70	eus U^{236} is nearly about (c) 1 eV produces $_{90} Th^{229}$ by succ (b) Three β^+ particles (d) One α particle and γ^{-1} ording to the scheme $\Rightarrow A_4$ and 72 respectively, then w [Roorkee 1986; CBSE PM (c) 176 and 69	(d) Zero Radioactivity cessive emissions. The emitted [MP PMT 2004] two β^- particles		
16.	energy required to remove (a) 75 <i>MeV</i> A radioactive decay chair particles can be (a) Two α -particles and or (c) One α particle and two A radioactive nucleus under A If the mass number and at (a) 172 and 69 Which of the following is in	e one neutron from the nucle (b) 6.5 <i>MeV</i> In starts from ${}_{93}Np^{237}$ and $pe \beta^-$ particle $p \beta^+$ particles ergoes a series of decay acco $\frac{\alpha}{2} \rightarrow A_1 \xrightarrow{\beta} A_2 \xrightarrow{\alpha} A_3 \xrightarrow{\gamma}$ comic number of <i>A</i> are 180 are (b) 174 and 70 in the increasing order for p	eus U^{236} is nearly about (c) 1 eV produces ${}_{90}Th^{229}$ by succ (b) Three β^+ particles (d) One α particle and β^+ ording to the scheme $\Rightarrow A_4$ and 72 respectively, then w [Roorkee 1986; CBSE PM (c) 176 and 69 enetrating power	(d) Zero Radioactivity cessive emissions. The emitted [MP PMT 2004] two β^- particles that are these number for A_4 T 1995; MP PET 2002; KCET 2003] (d) 176 and 70		
16. 17. 18.	energy required to remove (a) 75 <i>MeV</i> A radioactive decay chair particles can be (a) Two α -particles and or (c) One α particle and two A radioactive nucleus under <i>A</i> – If the mass number and at (a) 172 and 69 Which of the following is it (a) α , β , γ	the one neutron from the nuclei (b) 6.5 <i>MeV</i> In starts from ${}_{93}Np^{237}$ and the β^- particle β^+ particles the goes a series of decay accord $\frac{\alpha}{2} \rightarrow A_1 \xrightarrow{\beta} A_2 \xrightarrow{\alpha} A_3 \xrightarrow{\gamma}$ from number of <i>A</i> are 180 at (b) 174 and 70 In the increasing order for p (b) β , α , γ	eus U^{236} is nearly about (c) 1 eV produces $_{90}Th^{229}$ by succ (b) Three β^+ particles (d) One α particle and β^+ ording to the scheme $\Rightarrow A_4$ and 72 respectively, then w [Roorkee 1986; CBSE PM (c) 176 and 69 enetrating power (c) γ , α , β	(d) Zero Radioactivity Radioactivity cessive emissions. The emitted [MP PMT 2004] two β^- particles that are these number for A_4 T 1995; MP PET 2002; KCET 2003] (d) 176 and 70 (d) γ , β , α		
16. 17. 18.	energy required to remove (a) 75 <i>MeV</i> A radioactive decay chair particles can be (a) Two α -particles and or (c) One α particle and two A radioactive nucleus under A If the mass number and at (a) 172 and 69 Which of the following is if (a) α , β , γ Which of the following is a	e one neutron from the nucle (b) 6.5 <i>MeV</i> In starts from ${}_{93}Np^{237}$ and the β^- particle β^+ particles ergoes a series of decay acco $\frac{\alpha}{2} \rightarrow A_1 \xrightarrow{\beta} A_2 \xrightarrow{\alpha} A_3 \xrightarrow{\gamma}$ fromic number of <i>A</i> are 180 at (b) 174 and 70 In the increasing order for p (b) β , α , γ a correct statement	eus U^{236} is nearly about (c) 1 eV produces $_{90} Th^{229}$ by succ (b) Three β^+ particles (d) One α particle and γ ording to the scheme $\Rightarrow A_4$ and 72 respectively, then w [Roorkee 1986; CBSE PM (c) 176 and 69 enetrating power (c) γ , α , β [II	(d) Zero Radioactivity Radioactivity cessive emissions. The emitted [MP PMT 2004] two β^- particles that are these number for A_4 T 1995; MP PET 2002; KCET 2003] (d) 176 and 70 (d) γ , β , α TT-JEE 1999; DPMT 2000; UPSET 200		
16.	energy required to remove (a) 75 <i>MeV</i> A radioactive decay chair particles can be (a) Two α -particles and or (c) One α particle and two A radioactive nucleus under <i>A</i> – If the mass number and at (a) 172 and 69 Which of the following is it (a) α , β , γ	e one neutron from the nucle (b) 6.5 <i>MeV</i> In starts from ${}_{93}Np^{237}$ and the β^- particle β^+ particles ergoes a series of decay acco $\frac{\alpha}{2} \rightarrow A_1 \xrightarrow{\beta} A_2 \xrightarrow{\alpha} A_3 \xrightarrow{\gamma}$ fromic number of <i>A</i> are 180 at (b) 174 and 70 In the increasing order for p (b) β , α , γ a correct statement	eus U^{236} is nearly about (c) 1 eV produces $_{90}Th^{229}$ by succ (b) Three β^+ particles (d) One α particle and β^+ ording to the scheme $\Rightarrow A_4$ and 72 respectively, then w [Roorkee 1986; CBSE PM (c) 176 and 69 enetrating power (c) γ , α , β	(d) Zero Radioactivity Radioactivity cessive emissions. The emitted [MP PMT 2004] two β^- particles that are these number for A_4 T 1995; MP PET 2002; KCET 2003] (d) 176 and 70 (d) γ , β , α TT-JEE 1999; DPMT 2000; UPSET 200		

Get More Learning Materials Here : 💻

120. The rate of disintegration of fixed quantity of a radioactive element can be increased by [MP PMT 1997, 2003] (a) Increasing the temperature(b) Increasing the pressure (c) Chemical reaction (d) **121.** An element *A* decays into element *C* by a two step process [MP PMT 1997, 2003] $A \rightarrow B + _2He^4$ $B \rightarrow C + 2e^{-}$, then [CBSE 1994; AMU 2002; KCET 2003] (a) A and C are isotopes (b) A and C are isobars (c) *A* and *B* are isotopes (d) A and B are isobars **122.** In the disintegration series $\overset{238}{92}U \xrightarrow{\alpha} X \xrightarrow{\beta} \overset{\beta}{\longrightarrow} \overset{A}{\gamma}Y$ the value of Z and A respectively will be [MP PET/PMT 2001; DPMT 2002; MP PMT 2003] (a) 92, 236 (b) 88, 230 (c) 90, 234 (d) 91, 234 **123.** The α -particle is the nucleus of an atom of [CBSE 1999; RPET 2000; AFMC 2003 MP PET 2003] (a) Neon (b) Hydrogen (c) Helium (d) Deuterium **124.** An atomic nucleus ${}_{90}Th^{232}$ emits several α and β radiations and finally reduces to ${}_{82}Pb^{208}$. It must have emitted [RPMT 1998; MP PET 2003] (a) 4α and 2β (b) 6α and 4β (c) 8α and 24β (d) 4α and 16β **125.** Which of the following radiations has the least wavelength (a) X-rays (b) γ -rays (c) β -rays (d) α -rays **126.** In a material medium, when a positron meets an electron both the particles annihilate leading to the emission of two gamma ray photons. This process forms the basis of an important diagnostic procedure called (c) CAT (d) SPECT (a) MRI (b) PET **127.** Which of the following rays are not electromagnetic waves (a) γ -rays (b) β -rays (c) Heat rays (d) X-rays **128.** A nucleus with Z = 92 emits the following in a sequence : $\alpha, \beta^-, \beta^-, \alpha, \alpha, \alpha, \alpha, \alpha, \alpha, \beta^-, \beta^-, \alpha, \beta^+, \beta^+, \alpha$. The *Z* of the resulting nucleus is [AIEEE 2003] (a) 74 (b) 76 (c) 78 (d) 82 129. Radioactive nuclei that are injected into a patient collect at certain sites within its body, undergoing radioactive decay and emitting electromagnetic radiation. These radiations can then be recorded by a detector. This procedure provides an important diagnostic tool called (b) CAT scan (c) Radiotracer technique (d) Gamma (a) Gamma camera rav spectroscopy **130.** Which of the following cannot be emitted by radioactive substances during their decay [Haryana PMT 2000; AIEEE 2003] (a) Electrons (b) Protons (c) Neutrinoes (d) Helium nuclei 131. At a specific instant emission of radioactive compound is deflected in a magnetic field. The compound can emit (iii) *He*²⁺ (i) Electrons (ii) Protons (iv) Neutrons The emission at the instant can be (c) iv (d) ii, iii (a) i, ii, iii (b) i, ii, iii, iv **132.** Read the following statements and identify the correct one (i) Radioactive decay obeys the law of exponential

CLICK HERE

Get More Learning Materials Here : 💶

🕀 www.studentbro.in

Nuclear Physics & Radioactivity 117

	(ii) Electrons orbiting	the nucleus are responsible for r	adioactivity	
	(iii)	Half life period is greater th	-	
	(iv)After disintegration	on radio carbon is converted into	N-14	
	(a) (i), (ii) correct and (iii) false	d (iii), (iv) false	(b)	(i), (ii), (iv) correct and
	(c) (i), (ii), (iii) and ((iii) false	iv) are correct	(d)	(i), (iv) correct and (ii)
133.	If $_{92}U^{238}$ undergoes su	ccessively 8 $lpha$ -decays and 6 eta -de	cays, then resulting nu	cleus is
	(a) $_{82}U^{206}$	(b) $_{82}Pb^{206}$	(c) $_{82}U^{210}$	(d) $_{82}U^{214}$
34.	In the given reaction	$_{z}X^{A} \rightarrow _{z+1}Y^{A} \rightarrow _{z-1}K^{A-4} \rightarrow _{z-1}K^{A-4}$	1	
2002]		s are emitted in the sequence	[AIIMS 1982	2; CBSE 1993; AFMC 1999; MP PET
	(a) <i>α</i> , <i>β</i> , γ	(b) <i>β</i> , <i>α</i> , γ	(c) γ, α, β	(d) <i>β</i> , γ, α
35.	A nucleus $_{n}X^{m}$ emits of	one $lpha$ and one eta particles. The res	ulting nucleus is	
		[Simi]	lar to (Kerala PMT 2002)); CBSE 1998; BHU 2001; AFMC 2002]
	(a) $_{n}X^{m-4}$	(b) $_{n-2}Y^{m-4}$	(c) $_{n-4}Z^{m-4}$	(d) $_{n-1}Z^{m-4}$
1 36.	In radioactive elemen	t, β -rays emits from		[AIEEE 2002]
	(a) Nucleus	(b) Outer-orbit	(c) Inner-orbit	(d) None of these
37 .	The equation $_{z}X^{A} \rightarrow_{z+}$	$_{1}Y^{A} +_{-1}e^{0} + \overline{v}$ is		[CPMT 2002]
	(a) β -emission	(b) α -emission	(c) <i>e</i> ⁻ capture	(d) Fission
38.	A $\pi^{\rm o}$ at rest decays int	o 2 γ rays $\pi^0 ightarrow \gamma + \gamma$. Then which o	of the following can ha	ppen [CPMT 2002]
	(a) The two –γ's move	in same direction	(b) The two γ 's move	e in opposite direction
	(c) Both repel each ot	her	(d) Both attract each	n other
39.	A radioactive substand	ce emits		
	(a) Electromagnetic r the nucleus	adiation	(b)	Electrons revolving around
	(c) Charged particles		(d) Neutral particles	5
4 0.	Which of the following	g processes represents a gamma-	decay	
	(a) ${}^{A}X_{z} + \gamma \rightarrow {}^{A}X_{z-1} + a$	+b (b) ${}^{A}X_{Z} + {}^{1}n_{0} \rightarrow {}^{A-3}X_{Z-2} + c$	(c) ${}^{A}X_{Z} \rightarrow {}^{A}X_{Z} + f$	(d) ${}^{A}X_{Z} + e_{-1} \rightarrow {}^{A}X_{Z-1} + g$
41.	The S.I. unit of radioa	ctivity is		
	(a) Roentgen	(b) Rutherford	(c) Curie	(d) Becqueral
4 2 .	Which one of the follo	wing statements about uranium i	s correct	
	(a) ^{235}U is fissionable	e by thermal neutrons		
	(b) Fast neutrons trig	ger the fission process in ^{235}U		
	(c) ^{238}U breaks up in	to fragments when bombarded by	slow neutrons	
	(d) ^{235}U is an unstable	e isotope and undergoes spontan	eous fission	
43 ∙	When a radioactive su	bstance emits an α -particle, its p	osition in the periodic	table is lowered by
	(a) One place	(b) Two places	(c) Three places	(d) Four places

CLICK HERE

Regional www.studentbro.in

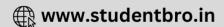
Get More Learning Materials Here : 💻

l 44 •				
	Which rays contain posi	tively charged particles		[CBSE PM/PD 2001]
	(a) α -rays	(b) <i>β</i> -rays	(c) γ-rays	(d) x-rays
4 5 .	The electron emitted in	beta radiation originates fro	om	
	[Similar to (II	T-JEE 1983; ISM Dhanbad 1994	4; RPET 1994; AFMC 1997; BH	IU 2000); IIT-JEE (Screening) 2001]
	(a) Inner orbits of atom	IS	(b) Free electrons exi	isting in nuclei
	(c) Decay of a neutron inucleus.	in nucleus	(d)	Photon escaping from the
46.	Which of the following i 2001]	is a good nuclear fuel		[Manipal MEE 1995; RPET
	(a) Neptunium – 239	(b) Plutonium – 239	(c) Thorium – 236	(d) Uranium – 236
4 7.	In which of the followin	ng decay, the element does no	ot change	
	(a) β -decay	(b) α -decay	(c) γ-decay	(d) None of these
48.	The correct order of ion	izing capacity of α , β and γ -r	rays is	
	(a) $\alpha > \gamma > \beta$	(b) $\alpha > \beta > \gamma$	(c) $\alpha < \beta < \gamma$	(d) $\alpha > \beta < \gamma$
49.		V strikes a stationary deute		
10	_			
	(a) $\frac{15}{16}$	(b) $\frac{1}{2}$	(c) $\frac{2}{1}$	(d) None of these
50.	A nucleus $_{Z}X^{A}$ emits an numbers of the final numbers of the fina	-	nucleus emits a β^+ particle.	. The respective atomic and mass
	(a) <i>Z</i> -3, <i>A</i> -4	(b) <i>Z</i> -1, <i>A</i> -4	(c) <i>Z</i> -2, <i>A</i> -4	(d) <i>Z</i> , <i>A</i> -2
51.	The same radioactive nu	ıcleus may emit		[BHU Med. 1999]
	(a) All the three α , β and	d γ simultaneously	(b) All the three α , β	and γ one after another
	(c) Either α or β and γ a simultaneously	t a time		(d) Only α and β
52.	Consider the following	two statements		[AMU (Med.) 1999]
	(A) Energy spectrum of	α -particles emitted in radio	active decay is discrete.	
		a nontial a amittad in radia	active decay is continuous	
	(B) Energy spectrum of	<i>p</i> -particles emitted in radioa	active accay is continuous	
	(B) Energy spectrum of(a) Only A is correct	(b) Only <i>B</i> is correct	-	is wrong (d)Both A and B are corre
53.	(a) Only A is correct	(b) Only <i>B</i> is correct	(c) A is correct but B	is wrong (d)Both <i>A</i> and <i>B</i> are corre acity is for [EAMCET (Engg.) 1998]
53.	(a) Only A is correct	(b) Only <i>B</i> is correct	(c) A is correct but B	•
	(a) Only <i>A</i> is correctAmong electron, proton(a) Electron	(b) Only <i>B</i> is correct , neutron and α particle the s	(c) A is correct but Bmaximum penetration capa(c) Neutron	acity is for [EAMCET (Engg.) 1998]
	(a) Only <i>A</i> is correctAmong electron, proton(a) Electron	(b) Only <i>B</i> is correct , neutron and α particle the (b) Proton	(c) A is correct but Bmaximum penetration capa(c) Neutron	acity is for [EAMCET (Engg.) 1998]
54.	(a) Only <i>A</i> is correct Among electron, proton (a) Electron When $_{15}P^{30}$ decays to be (a) Electron	(b) Only <i>B</i> is correct , neutron and α particle the s (b) Proton ecome ₁₄ Si ³⁰ , the particle res	 (c) A is correct but B maximum penetration capa (c) Neutron leased is (c) Neutron 	acity is for [EAMCET (Engg.) 1998] (d) <i>α</i> -particle
54.	(a) Only <i>A</i> is correct Among electron, proton (a) Electron When $_{15}P^{30}$ decays to be (a) Electron	(b) Only <i>B</i> is correct , neutron and α particle the r (b) Proton ecome $_{14}Si^{30}$, the particle ref (b) α -particle	 (c) A is correct but B maximum penetration capa (c) Neutron leased is (c) Neutron 	acity is for [EAMCET (Engg.) 1998] (d) <i>α</i> -particle
54. 55.	(a) Only <i>A</i> is correct Among electron, proton (a) Electron When $_{15}P^{30}$ decays to b (a) Electron Which of the following (a) Radio waves	(b) Only <i>B</i> is correct , neutron and α particle the r (b) Proton ecome $_{14}Si^{30}$, the particle rel (b) α -particle does not have the velocity ec (b) γ -rays $_{29}Cu^{64}$ and $_{30}Zn^{64}$ are 63.92	(c) A is correct but B maximum penetration capa (c) Neutron leased is (c) Neutron qual to that of light (c) β -particles	acity is for [EAMCET (Engg.) 1998] (d) α-particle (d) Positron
54. 55.	(a) Only <i>A</i> is correct Among electron, proton (a) Electron When $_{15}P^{30}$ decays to be (a) Electron Which of the following of (a) Radio waves Masses of two isobars	(b) Only <i>B</i> is correct , neutron and α particle the r (b) Proton ecome $_{14}Si^{30}$, the particle rel (b) α -particle does not have the velocity eco (b) γ -rays $_{29}Cu^{64}$ and $_{30}Zn^{64}$ are 63.92 at	(c) A is correct but B maximum penetration capa (c) Neutron leased is (c) Neutron qual to that of light (c) β -particles	acity is for [EAMCET (Engg.) 1998] (d) α-particle (d) Positron (d) EM waves
54. 55.	(a) Only <i>A</i> is correct Among electron, proton (a) Electron When $_{15}P^{30}$ decays to be (a) Electron Which of the following of (a) Radio waves Masses of two isobars that from these data that (a) Both the isobars are decaying to Cu^{64} throug (c) Cu^{64} is radioactive,	(b) Only <i>B</i> is correct , neutron and α particle the r (b) Proton ecome $_{14}Si^{30}$, the particle rel (b) α -particle does not have the velocity eco (b) γ -rays $_{29}Cu^{64}$ and $_{30}Zn^{64}$ are 63.92 at e stable gh β -decay decaying to Zn^{64} through γ -	(c) A is correct but B maximum penetration capa (c) Neutron leased is (c) Neutron qual to that of light (c) β -particles 298 amu and 63.9292 amu (b)	 acity is for [EAMCET (Engg.) 1998] (d) α-particle (d) Positron (d) EM waves respectively. It can be concluded
54. 55.	(a) Only <i>A</i> is correct Among electron, proton (a) Electron When $_{15}P^{30}$ decays to be (a) Electron Which of the following of (a) Radio waves Masses of two isobars that from these data that (a) Both the isobars are decaying to Cu^{64} throug (c) Cu^{64} is radioactive, decaying to Zn^{64} throug	(b) Only <i>B</i> is correct , neutron and α particle the s (b) Proton ecome $_{14}Si^{30}$, the particle res (b) α -particle does not have the velocity eq (b) γ -rays $_{29}Cu^{64}$ and $_{30}Zn^{64}$ are 63.92 at e stable gh β -decay decaying to Zn^{64} through γ - gh β -decay 00 <i>KeV</i> are bombarded on	(c) A is correct but B maximum penetration capa (c) Neutron leased is (c) Neutron qual to that of light (c) β -particles 298 amu and 63.9292 amu (b) decay (d)	acity is for [EAMCET (Engg.) 1998] (d) α -particle (d) Positron (d) EM waves respectively. It can be concluded Zn^{64} is radioactive

Get More Learning Materials Here : 💻

Regional www.studentbro.in

158. In the given nuclear reaction A, B, C, D, E represents ${}_{92}U^{238} \xrightarrow{\alpha} {}_{B}Th^{A} \xrightarrow{\beta} {}_{D}Pa^{C} \xrightarrow{E} {}_{92}U^{234}$ (a) A = 234, B = 90, C = 234, D = 91, $E = \beta$ (b) A = 234, B = 90, C = 238, D = 94, $E = \alpha$ (c) $A = 238, B = 93, C = 234, D = 91, E = \beta$ (d) $A = 234, B = 90, C = 234, D = 93, E = \alpha$ **159.** The activity of a radioactive sample is measured as 9750 counts per minute at t = 0, as 975 counts per minute at t = 5 min. the decay constant is approximatel (a) 0.230 per minute (b) 0.461 per minute (c) 0.691 per minute (d) 0.922 per minute 160. Which of the following isotopes is used for the treatment of cancer (a) K⁴⁰ (b) Co⁶⁰ (c) Sr⁹⁰ (d) *I*¹³¹ 161. Age of a tree is determined using radio-isotope of [EAMCET (Engg.) 1995] (a) Carbon (b) Cobalt (d) Phosphorus (c) Iodine **162.** Which of the following statements are true regarding radioactivity (I) All radioactive elements decay exponentially with time (II) Half life time of a radioactive element is time required for one half of the radioactive atoms to disintegrate (III) Age of earth can be determined with the help of radioactive dating (IV) Half life time of a radioactive element is 50% of its average life period Select correct answer using the codes given below Codes : [SCRA 1994] (a) I and II (b) I, III and IV (c) I, II and III (d) II and III 163. Unit of radioactivity is *Rutherford*. Its value is [MP PMT 1994] (a) 3.7×10^{10} disintegrations/sec (b) 3.7×10^{6} disintegrations/sec (c) 1.0×10^{10} disintegrations/sec 1.0×10^6 disintegrations/sec (d) **164.** The essential distinction between X-rays and γ -rays is that (a) γ -rays have smaller wavelength than X-rays (b) γ -rays emanate from nucleus while X-rays emanate from outer part of the atom (c) γ -rays have greater ionizing power than X-rays (d) γ -rays are more penetrating than X-rays 165. Neutrons can be accelerated by (a) Cyclotron (b) Betatron (c) Van-de-graph generator (d) None of these **166.** If the end A of a wire is irradiated with α -rays and the other end B is irradiated with β -rays, then (a) A current will flow from A to B (b) A current will flow from *B* to *A* (c) There will be no current in the wire (d) A current will flow from each end to the mid-point of the wire 167. Which of the following statements is true [MP PET 1993] (a) $_{78}Pt^{192}$ has 78 neutrons (b) $_{84}Po^{214} \rightarrow {}_{82}Pb^{210} + \beta^{-1}$ (c) $_{92}U^{238} \rightarrow _{90}Th^{234} + _{2}He^{4}$ (d) $_{90}Th^{234} \rightarrow _{91}Pa^{234} + _{2}He^{4}$ **168.** When a radioactive substance is subjected to a vacuum, the rate of disintegration per second (b) Increases only if the products are gaseous (a) Increases considerably (c) Is not affected (d) Suffers a slight decrease 169. Radioactivity is due to [MP PMT 1983]


Get More Learning Materials Here : 📕

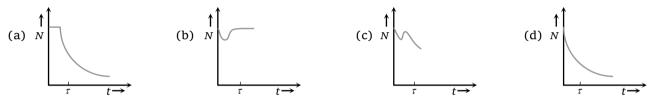
🕀 www.studentbro.in

Nuclear Physics & Radioactivity 121 (a) Unstable electronic configuration (b) Stable electronic configuration (c) Stable nucleus (d) Unstable nucleus **170.** Cosmic rays, as they arrive at the top of the atmosphere, consist mainly of [NCERT 1979] (a) High energy electrons (b) Heavy atoms (c) Heavy nuclei (d) Protons 171. After 280 days, the activity of a radioactive sample is 6000 dps. The activity reduces to 3000 dps after another 140 days. The initial activity of the sample in dps is (a) 6000 (b) 9000 (c) 3000 (d) 24000 **172.** The half-life of radium is 1600 years. What is the fraction of sample undecayed after 6400 years (c) $\frac{1}{16}$ (d) $\frac{1}{24}$ (a) $\frac{1}{4}$ (b) $\frac{1}{8}$ **173.** A count rate meter shows a count of 240 per minute from a given radioactive source. One hour later the meter shows a count rate of 30 per minute. The half-life of the source is (a) 20 min (b) 30 min (c) 80 min (d) 120 min **174.** The half life of a sample of a radioactive substance is 1 hour. If 8×10^{10} atoms are present at t = 0, then the number of atoms decayed in the duration t = 2 hour to t = 4 hour will be (b) 1.5×10^{10} (a) 2×10^{10} (c) Zero (d) Infinity **175.** The half-life of radium is about 1600 years. Of 100 *q* of radium existing now, 25 *q* will remain unchanged after [CBSE PMT/PDT (Screening) 2004] (c) 6400 years (a) 3200 years (b) 4800 years (d) 2400 years 176. A radioactive substance decays to 1/16th of its initial activity in 40 days. The half-life of the radioactive substance expressed in days is [AIIMS 2003] (a) 2.5 (d) 20 (b) 5 (c) 10 177. Rate of decay is proportional to (a) The number of nuclei initially present (b) The number of active nuclei present at that instant (c) To the number of decayed nuclei (d) None of these **178.** The rate of radioactive decay of a material is 800 dps. If the half-life period of the material is 1 sec, the rate of decay after 3 seconds will be (a) 800 dps (b) 400 dps (c) 200 dps (d) 100 dps **179.** A sample of radioactive element has a mass of 10 q at an instant t = 0. The approximate mass of this element in the sample after two mean lives is (b) 2.50 q (a) 1.35 q (c) 3.70 g (d) 6.30 q **180.** The half-life of radium is 1620 years and its atomic weight is 226 kg per kilomol. The number of atoms that will decay from its 1 gm sample per second will be (Avogadro's number $N = 6.02 \times 10^{26}$ atom/kilomol) (c) 3.6×10^{12} (a) 31.1×10^{15} (b) 3.11×10^{15} (d) 3.61×10^{10} 181. Half-life of a radioactive substance is 20 minutes. The time between 20% and 80% decay will be (a) 20 minutes (b) 40 minutes (c) 30 minutes (d) 25 minutes **182.** The half-life of a radioactive substance is 48 hours. How much time will it take to disintegrate to its $\frac{1}{16}$ th part [BCECI (b) 16 h (a) 12 h (c) 48 h (d) 192 h 183. A radioactive material has an initial amount of 16 gm. After 120 days it reduces to 1 gm, then the half-life of radioactive material is [Similar to (RPET 1997; MP PET/PMT 2002); Bihar MEE 1995; Manipal MEE 1995;

Get More Learning Materials Here : 🗾

		EA	AMCET 1994; MP PMT 1997; AF	MC 2000; DPMT 2002; CPMT 2003]
	(a) 60 days	(b) 30 days	(c) 40 days	(d) 240 days
4.		lioactive substances whose half The time (approximate) after w	· · ·	pectively. Initially 10 <i>gm</i> of A and an and an and an and a set of the set o
	(a) 6.62 years	(b) 5 years	(c) 3.2 years	(d) 7 years
85.	The activity of a sar	nple is 64×10^{-5} Ci . Its half-life	is 3 days. The activity will be	ecome 5×10^{-6} Ci after
	(a) 12 days	(b) 7 days	(c) 18 days	(d) 21 days
86.	-	of a radioactive element <i>X</i> is s m have the same number of ato		of another radioactive element Y
	(a) X and Y have the	e same decay rate initially	(b) X and Y decay at	the same rate always
	(c) Y will decay at a	a faster rate than X	(d) X will decay at a f	aster rate than Y
87.	N atoms of a radio	active element emit <i>n</i> alpha pa	articles per second. The hal	f life of the element is
				[MP PET 1995; MP PMT 1997, 2003]
	(a) $\frac{n}{N}$ sec	(b) $\frac{N}{n}$ sec	(c) $\frac{0.693 N}{n} sec$	(d) $\frac{0.693 n}{N}$ sec
88.	-	e at any instant has its disinteg ntegrations per minute. Then, t	- 0	tion per minute. After 5 minutes, ite) is
	(a) 0.8 ln 2	(b) 0.4 ln 2	(c) 0.2 ln 2	(d) 0.1 ln 2
9.	A radioactive substa	ance has an average life of 5 ho	urs. In a time of 5 hours	[Orissa JEE 2003]
	(a) Half of the activ nuclei decay	re nuclei decay	(b)	Less than half of the active
	(c) More than half	of the active nuclei decay	(d) All active nuclei d	ecay
0.	In a mean life of a r	adioactive sample		[MP PMT 2000, 2003]
	(a) About 1/3 of sub	ostance disintegrates	(b) About 2/3 of the s	ubstance disintegrates
	(c) About 90% of the	ne substance disintegrates	(d) Almost all the sub	stance disintegrates
)1.	Half-life of a substa	nce is 10 years. In what time, i	t becomes $\frac{1}{4}$ th part of the in	itial amount
	(a) 5 years	(b) 10 years	(c) 20 years	(d) None of these
)2.	If in a radioactive s half lives will be	ubstance, the initial number of	active atoms is 1000, the nu	umber of active atoms after three
				[RPMT 2002]
	(a) 1000	(b) 500	(c) 250	(d) 125
)3.	A sample of a radio intact in the sample			ays, how many atoms will be left
	(a) 1414	(b) 1000	(c) 2000	(d) 707
94.	The activity of a sar then (QBP-1263)	nple of a radioactive material is	s A at time t_1 and A_2 at time	t_{2} ($t_{2} > t_{1}$). If its mean life <i>T</i> , [BHU 2002]
	(a) $A_1 t_1 = A_2 t_2$	(b) $A_1 - A_2 = t_2 - t_1$	(c) $A_2 = A_1 e^{(t_1 - t_2)/T}$	(d) $A_2 = A_1 e^{(t_1 / t_2)T}$
5				hen the amount of substance left
	after 15 years is	in mass of the substance of fian	me period $r_{1/2} = 5$ years, t	nen ene amount of substance fell
	- •			[AIEEE 2002]
				E

Get More Learning Materials Here : 💻

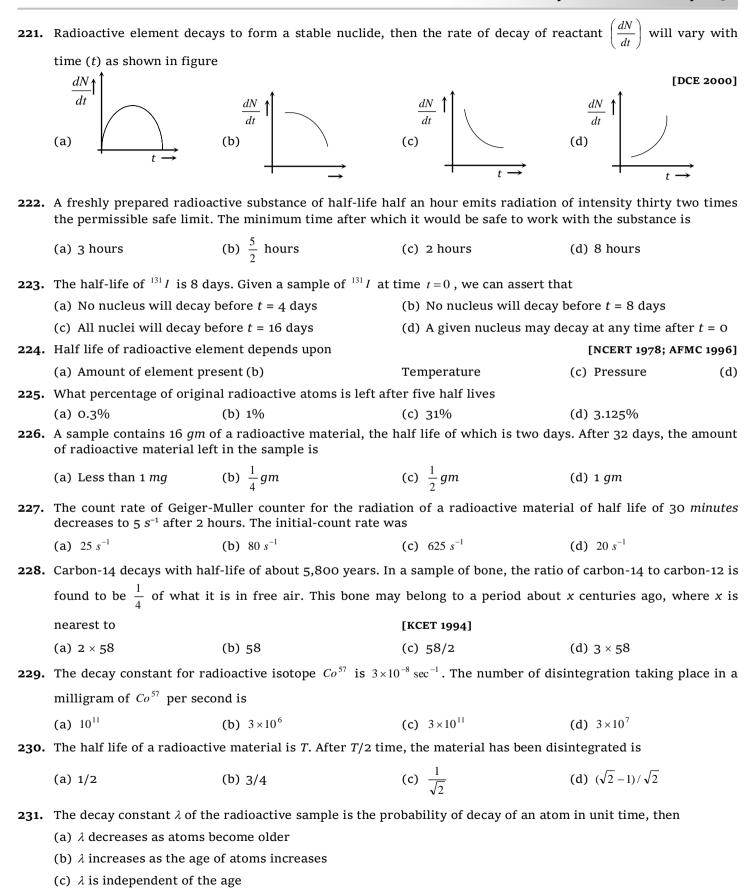

196. In a sample of radioactive material, what percentage of the initial number of active nuclei will decay during one mean life [KCET 2002] (a) 69.3% (b) 63% (c) 50% (d) 37% **197.** The half-life of a radioactive substance against α -decay is 1.2×10^7 s. What is the decay rate for 4.0×10^{15} atoms of the substance [AMU (Med.) 2002] (a) $4.6 \times 10^{12} a toms/s$ (b) $2.3 \times 10^{11} a toms/s$ (c) $4.6 \times 10^{10} a toms/s$ (d) 2.3×10^8 atoms/s 198. 10 qm of radioactive material of half-life 15 year is kept in store for 20 years. The disintegrated material is (a) 12.5 q (b) 10.5 q (c) 6.03 q (d) 4.03 q **199.** If half-life of a substance is 3.8 days and its quantity is 10.38 gm. Then substance quantity remaining left after 19 days will be [(Similar to UPSEAT 2001; RPMT 2000; AFMC 2002] (a) 0.151 gm (b) 0.32 gm (c) 1.51 qm (d) 0.16 qm **200.** Decay constant of radium is λ . By a suitable process its compound radium bromide is obtained. The decay constant of radium bromide will be (a) λ (b) More than λ (c) Less than λ (d) Zero 201. A radioactive material decays by simultaneous emission of two particles with respective half lives 1620 and 810 years. The time (in years) after which one-fourth of the material remains is (a) 1080 (b) 2430 (c) 3240 (d) 4860 **202.** If the decay or disintegration constant of a radioactive substance is λ , then its half life and mean life are respectively ($\log_e 2$ can also be written as $\log 2$) (a) $\frac{1}{\lambda}$ and $\frac{\log_e 2}{\lambda}$ (b) $\frac{\log_e 2}{\lambda}$ and $\frac{1}{\lambda}$ (c) $\lambda \log_e 2$ and $\frac{1}{\lambda}$ (d) $\frac{\lambda}{\log_e 2}$ and $\frac{1}{\lambda}$ **203.** The decay constant of a radioactive element is 0.01 *per sec.* Its half life period is [DPMT 2001] (a) 693 sec (b) 6.93 sec (c) 0.693 sec (d) 69.3 sec **204.** The half-life of Bi^{210} is 5 days. In the seven samples out of eight, the time required for decay is (a) 3.4 days (b) 10 days (c) 15 days (d) 20 days **205.** 99% of a radioactive element will decay between [AMU (Engg.) 2001] (a) 6 and 7 half lives (b) 7 and 8 half lives (c) 8 and 9 half lives (d) 9 half lives 206. Certain radioactive substance reduces to 25% of its value in 16 days. Its half-life is [MP PMT 2001] (b) 8 days (c) 64 days (a) 32 days (d) 28 days **207.** The decay constant of a radioactive element is 1.5×10^{-9} per second. Its mean life in seconds will be (a) 1.5×10^9 (b) 4.62×10^8 (d) 10.35×10^8 (c) 6.67×10^8 **208.** Three fourth of the active decays in a radioactive sample in 3/4 sec. The half life of the sample is (c) $\frac{3}{8}$ sec (a) $\frac{1}{2}$ sec (d) $\frac{3}{4}$ sec (b) 1 sec 209. During mean life of a radioactive element, the fraction that disintegrates is [CPMT 2001] (b) $\frac{1}{1}$ (c) $\frac{e-1}{2}$ (d) $\frac{e}{e-1}$ (a) e **210.** Half-life is measured by [RPET 2001]

Get More Learning Materials Here :

🕀 www.studentbro.in

	(a) Geiger-Muller counter (b) Carbon dating	(c) Spectroscopic method	(d) Wilson-O	Cloud chan	nber
211.	1 <i>Curie</i> is equal to			[BHU	2001]
	(a) 3 × 10 ¹⁰ disintegrations / sec sec	(b)	$3.7 \times 10^7 di$	sintegrati	ons /
	(c) 5×10^7 disintegrations / sec disintegrations / sec		(d) 3.7	×	10 ¹⁰

212. A radioactive sample consists of two distinct species having equal number of atoms initially. The mean life time of one species is τ and that of the other is 5τ . The decay products in both cases are stable. A plot is made of the total number of radioactive nuclei as a function of time. Which of the following figures best represents the form of this plot. [IIT-JEE (Screening) 2001]


213. A radioactive substance has half-life of 60 minutes. During 3 hours, the fraction of atoms that have decayed would be

				[BHU (Med.) 2000]
	(a) 12.5%	(b) 87.5%	(c) 8.5%	(d) 25.1%
214.	The activity of a radioactiv	ve sample is 1.6 <i>curie</i> , and its	half-life is 2.5 days. Its activ	vity after 10 days will be
	(a) 0.8 <i>curie</i>	(b) 0.4 <i>curie</i>	(c) 0.1 <i>curie</i>	(d) 0.16 <i>curie</i>
215.	The half-life of ${}^{42}_{19}K$ is 12.5	5 hours. If the original sampl	e of it contained 256 gm.,	the amount of $\frac{42}{19}K$ after 100
	hours will be			
				[UPSEAT 2000]
	(a) 1.00 gm	(b) 2.00 <i>gm</i>	(c) 2.56 <i>gm</i>	(d) 5.12 <i>gm</i>
216.	N_0 is the number of radio	active atoms at any instant a	and N is the number of the	radioactive atoms remaining
		e graph drawn with $\log_e N$, w	where e is the base of natura	al logarithm along <i>y</i> -axis and
	<i>t</i> along the <i>X</i> -axis will be a	straight line with slope		
	(a) λ	(b) - λ	(c) $\frac{1}{2}$	(d) $-\frac{1}{2}$
			λ	λ
217.	1 <i>mg</i> of radioactive substant would have disintegrated	nce has 2.68×10^{18} nuclei. Its	half-life is 1620 year. After	3240 years how many nuclei [J & K CET 2000]
	(a) 1.82×10^{18}	(b) 1.34×10^{18}	(c) 0.67×10^{18}	(d) 2.01×10^{18}
218.	What fraction of radioactiv	ve material will get disintegra	ted in a period of two half-	lives
	(a) Whole	(b) Half	(c) One-fourth	(d) Three-fourth
219.		tive substances A and B are qual number of nuclei. After [CBSE 1998; JIPMER 2000	80 minutes, the ratio of re	
	(a) 1:16	(b) 4:1	(c) 1:4	(d) 1:1
220.	A radioactive sample has h	alf-life of 5 years. Probability	of decay in 10 years will be	[RPET 2000]
	(a) 100%	(b) 75%	(c) 50%	(d) 25%
220.	nuclei is (a) 1 : 16 A radioactive sample has h	[CBSE 1998; JIPMER 2000 (b) 4 : 1 alf-life of 5 years. Probability] (c) 1:4 y of decay in 10 years will be	(d) 1 : 1 e [RPET 2000]

CLICK HERE

🕀 www.studentbro.in

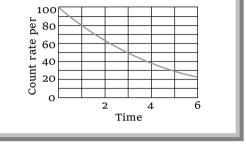
Get More Learning Materials Here :

Get More Learning Materials Here : 📕

🚓 www.studentbro.in

(d) Behaviour of λ with time depends on the nature of the activity

(b) 65%


232. If 10% of a radioactive material decays in 5 days, then the amount of original material left after 20 days is approximately [MNR 1987]

(a) 60%

233. The count rate of 10g of radioactive material was measured at different times and this has been shown in the figure. The half life of material and the total counts (approximately) in the first half life period, respectively are [CPMT 1986]

(c) 70%

- (a) 4h, 9000
- (b) 3h, 14000
- (c) 3*h*, 235
- (d) 3h, 50

(d) 75%

С

(d) 9.59×10^9 years

(d) 80 minutes

- **234.** The fraction *f* of radioactive material that has decayed in time *t*, varies with time *t*. The correct variation is given by the curve
 - (a) A
 - (b) *B*
 - (c) C
 - (d) D

235. The count rate from 100 cm^3 of a radioactive liquid is c. Some of this liquid is now discarded. The count rate of the remaining liquid is found to be c/10 after three half-lives. The volume of the remaining liquid, in cm^3 , is (a) 20 (b) 40 (c) 60 (d) 80

236. A radioactive isotope X with a half-life of 137×10^9 years decays to Y which is stable. A sample of rock from the moon was found to contain both the elements X and Y which were in the ratio of 1 : 7. The age of the rock is

(a) 1.96×10⁸ years

237. A radioactive element emits 200 particles per second. After three hours 25 particles per second are emitted. The half life period of element will be

(c) 4.11×10^9 years

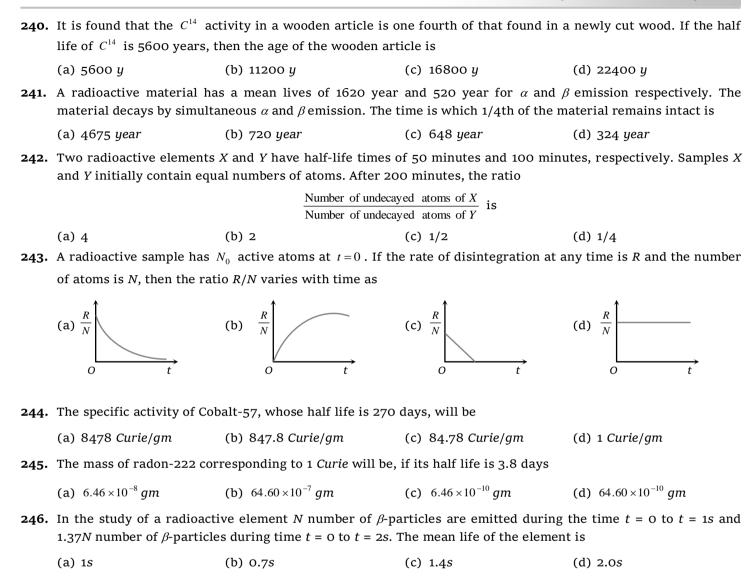
(c) 70 minutes

(a) 50 minutes (b) 60 minutes

(b) 3.85×10^9 years

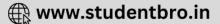
238. Element *X* decays into element *Y* with a half-life of 3 days. On 1st March a piece of *X* has a mass of 10 *g*. What mass of *X* and of *Y* exist 6 days after

Ν	lass of X	Mass of Y							
(a)	5 g	5 g							
(b)	10 g	Zero							
(c)	2.5 g	7.5 g							
(d)	7.5 g	2.5 g							
_1									


239. The radioactivity of a sample is R_1 at a time T_1 and R_2 at a time T_2 . If the half life of the specimen is T, the number of atoms that have disintegrated in the time $(T_2 - T_1)$ is proportional to

(a) $(R_1T_1 - R_2T_2)$ (b) $(R_1 - R_2)$ (c) $(R_1 - R_2)/T$ (d) $(R_1 - R_2)T$

Get More Learning Materials Here :


CLICK HERE



Get More Learning Materials Here : 📕

Assignments																			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
с	а	а	С	а	d	d	С	d	d	d	d	b	а	с	b	b	а	b	С
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
b	с	d	а	С	С	а	С	b	b	С	С	d	d	b	b	d	с	С	d
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
b	с	а	а	а	С	d	а	d	с	с	b	с	а	а	а	а	с	b	а
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
b	d	а	b	d	b	d	b	с	b	d	а	d	b	с	а	а	b	с	С
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
d	d	С	С	а	С	d	b	С	d	с	d	а	а	а	b	а	а	а	b
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
d	с	С	а	a,d	b	d	d	b	а	а	d	b	b	b	а	а	а	а	d
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
а	d	С	b	b	b	b	С	с	b	а	d	b	b	d	а	а	b	a,c	С
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
d	а	b	а	С	b	С	b	d	а	С	b	С	d	С	d	d	а	b	b
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
а	с	d	b	d	а	С	С	d	d	d	С	а	b	а	С	b	d	а	d
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
b	d	b	а	d	С	С	b	с	b	с	d	с	с	а	b	d	с	b	а
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220
а	b	d	С	а	b	С	С	С	а	d	d	b	С	а	b	d	d	С	b
221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
с	b	d	d	d	а	b	а	С	d	С	b	b	b	d	С	b	С	d	b
241	242	243	244	245	246														
с	d	d	а	с	а														

